BONE GRAFT OPTIONS: FACT AND FANCY
1994; Slack Incorporated (United States); Volume: 17; Issue: 9 Linguagem: Inglês
10.3928/0147-7447-19940901-21
ISSN1938-2367
AutoresVictor M. Goldberg, Sharon Stevenson,
Tópico(s)Orthopaedic implants and arthroplasty
ResumoRevision Total Hip ArthroplastyBONE GRAFT OPTIONS: FACT AND FANCY Victor M Goldberg, MD, , and , MD Sharon Stevenson, DVM, PhD, , DVM, PhD Victor M Goldberg, MD and Sharon Stevenson, DVM, PhD Orthopedics, 2013;17(9):809–821Published Online:September 01, 1994https://doi.org/10.3928/0147-7447-19940901-21Cited by:25PDFView Full Text ToolsAdd to favoritesDownload CitationsTrack Citations ShareShare onFacebookTwitterLinkedInRedditEmail SectionsMore1. Goldberg VM. Bone grafting in revision total hip arthroplasty. AAOS Instructional Course Lectures. 1992; 40:177-184. Google Scholar2. Goldberg VM, Stevenson S. Natural history of autografts and allografts. Clin Orthop. 1987; 225:7-16. Google Scholar3. Lance EM. Some observations on bone graft technology. Clin Orthop. 1985; 200:1 14-124. Google Scholar4. Goldberg VM, Shaffer JW, Field G, Davy DT. Biology of vascularized bone grafts. Orthop Clin North Am. 1987; 18:197-205. Google Scholar5. Urist MR. Bone transplants and implants. In: Urist MR, ed. Fundamentals and Clinical Bone Physiology. Philadelphia, Pa: JB Lippincott; 1980:331-368. Google Scholar6. Gross AE, Lavoie MV, McDerrnott P, Lavoie MV, McDermott P, Morris P. The use of allograft bone in revision of total hip arthroplasty. ClinOnhop. 1985; 197:115-122. Google Scholar7. Jasry M, Harris WH. Total hip reconstruction using frozen femoral head allografts in patients with acetabular bone loss. Orthop Clin North Am. 1987; 18:291-299. Google Scholar8. McCollum DE, Nunley JA, Harrelson JM. Bonegrafting in total hip replacement for acetabular protrusion. J Bone Joint Surg. 1980; 62A: 1065-1073. Google Scholar9. Friedlaender GE. Guidelines for banding osteochondral allografts. In: Friedlaender GE, Mankin JR, Seel KE, eds. Osteochondral Allografts: Biology, Banking and Clinical Applications. Boston, Mass: Little Brown; 1983:177180. Google Scholar10. Tomford WW, Doppelt SH, Mankin HJ, Doppelt SH, Mankin HJ, Friedlaender GE. 1983 bone bank procedures. Clin Orthop. 1983; 174:15-21. Google Scholar11. Gie GA, Linder L, Ling RS, et al. Impacted cancellous allografts and cement for revision total hip arthroplasty. J Borie Joint Surg. 1993; 75B:14-21. Google Scholar12. McGann W, Mankin HJ, Harris WH. Massive allografting for severe failed total hip replacement. J Bone Joint Surg. 1986;68A:4-12. Google Scholar13. Tomford WW, Ploetz JE, Mankin HJ. Bone allografts of femoral heads: procurement and storage. J Bone Joint Surg. 1986; 68A:534-537. Google Scholar14. Urist MR, Hernández A. Excitation transfer in bone: deleterious effects of cobalt 60 radiation-sterilization of bank bone. Arch Surg. 1974; 109:485. Google Scholar15. Ohgushi H, Goldberg VM, Caplan AI. Repair of segmentai long bone defect by composite graft of marrow cells and porous calcium phosphate ceramic. Acta Orthop Scand. 1989; 60:334-339. Google Scholar16. Yasko AW, Lane JM, Pellinger EJ, Rosen V, Wozney JM, Wang EA. The healing of segmentai bone defects, induced by recombinant human BMP-2. J Bone Joint Surg. 1992;74A:659-670. Google Scholar Previous article Next article FiguresReferencesRelatedDetailsCited by Barbeck M, Alkildani S and Jung O (2023) Biology of Ceramic Bone Substitutes Bioceramics, Biomimetic and Other Compatible Materials Features for Medical Applications, 10.1007/978-3-031-17269-4_2, (29-52), . Choi Y, Yang Y and Kwon Y (2021) Reliability of Goldberg Scoring System in the Radiographic Evaluation of Bony Union after Bone Grafting, Clinics in Orthopedic Surgery, 10.4055/cios19152, 13:4, (549), . Ma P, Eyster T and Doleyres Y (2018) Tissue Engineering Biomaterials Encyclopedia of Polymer Science and Technology, 10.1002/0471440264.pst471.pub2, (1-47) Kang Y, Wei J, Kim J, Wu Y, Lee E, Su J and Shin J (2018) Characterization and osteogenic evaluation of mesoporous magnesium–calcium silicate/polycaprolactone/polybutylene succinate composite scaffolds fabricated by rapid prototyping, RSC Advances, 10.1039/C8RA06281A, 8:59, (33882-33892) Wei G and Ma P (2016) Scaffolds: Polymer–Ceramic Composite Encyclopedia of Biomedical Polymers and Polymeric Biomaterials, 10.1081/E-EBPP-120052205, (7065-7071) Spin-Neto R, Stavropoulos A, Coletti F, Pereira L, Marcantonio E and Wenzel A (2014) Remodeling of cortical and corticocancellous fresh-frozen allogeneic block bone grafts - a radiographic and histomorphometric comparison to autologous bone grafts, Clinical Oral Implants Research, 10.1111/clr.12343, 26:7, (747-752), Online publication date: 1-Jul-2015. Lee D, Padilla R, Zhang H, Hu W and Ko C (2014) Biological Assessment of a Calcium Silicate Incorporated Hydroxyapatite-Gelatin Nanocomposite: A Comparison to Decellularized Bone Matrix, BioMed Research International, 10.1155/2014/837524, 2014, (1-12), . Spin-Neto R, Landazuri Del Barrio R, Pereira L, Marcantonio R, Marcantonio E and Marcantonio Jr E (2011) Clinical Similarities and Histological Diversity Comparing Fresh Frozen Onlay Bone Blocks Allografts and Autografts in Human Maxillary Reconstruction, Clinical Implant Dentistry and Related Research, 10.1111/j.1708-8208.2011.00382.x, 15:4, (490-497), Online publication date: 1-Aug-2013. Spin Neto R, Felipe Leite C, Pereira L, Marcantonio E and Marcantonio Jr E (2011) Is Peripheral Blood Cell Balanced Altered by the Use of Fresh Frozen Bone Block Allografts in Lateral Maxillary Ridge Augmentation?, Clinical Implant Dentistry and Related Research, 10.1111/j.1708-8208.2011.00385.x, 15:2, (262-270), Online publication date: 1-Apr-2013. Spin-Neto R, Stavropoulos A, Pereira L, Marcantonio E and Wenzel A (2011) Fate of autologous and fresh-frozen allogeneic block bone grafts used for ridge augmentation. A CBCT-based analysis, Clinical Oral Implants Research, 10.1111/j.1600-0501.2011.02324.x, 24:2, (167-173), Online publication date: 1-Feb-2013. Bhowmick A, Banerjee S, Kumar R and Kundu P (2013) Hydroxyapatite-Packed Chitosan-PMMA Nanocomposite: A Promising Material for Construction of Synthetic Bone Multifaceted Development and Application of Biopolymers for Biology, Biomedicine and Nanotechnology, 10.1007/12_2012_197, (135-167), . Bhattarai S, Bajgai M and Kim H (2012) Biodegradable Tunable Nanofibrous Matrix for Regenerative Medicine Handbook of Intelligent Scaffold for Tissue Engineering and Regenerative Medicine, 10.1201/b11625-17, (233-256), Online publication date: 17-Feb-2012. Nie L, Suo J, Zou P and Feng S (2012) Preparation and Properties of Biphasic Calcium Phosphate Scaffolds Multiply Coated with HA/PLLA Nanocomposites for Bone Tissue Engineering Applications, Journal of Nanomaterials, 10.1155/2012/213549, 2012, (1-11), . Filion T, Li X, Mason-Savas A, Kreider J, Goldstein S, Ayers D and Song J (2011) Elastomeric Osteoconductive Synthetic Scaffolds with Acquired Osteoinductivity Expedite the Repair of Critical Femoral Defects in Rats, Tissue Engineering Part A, 10.1089/ten.tea.2010.0274, 17:3-4, (503-511), Online publication date: 1-Feb-2011. Dagang G, Kewei X and Yaxiong L (2010) Physicochemical properties and cytotoxicities of Sr-containing biphasic calcium phosphate bone scaffolds, Journal of Materials Science: Materials in Medicine, 10.1007/s10856-010-4044-2, 21:6, (1927-1936), Online publication date: 1-Jun-2010. Nisbet D, Forsythe J, Shen W, Finkelstein D and Horne M (2008) Review Paper: A Review of the Cellular Response on Electrospun Nanofibers for Tissue Engineering, Journal of Biomaterials Applications, 10.1177/0885328208099086, 24:1, (7-29), Online publication date: 1-Jul-2009. Song J, Xu J, Filion T, Saiz E, Tomsia A, Lian J, Stein G, Ayers D and Bertozzi C (2009) Elastomeric high-mineral content hydrogel-hydroxyapatite composites for orthopedic applications, Journal of Biomedical Materials Research Part A, 10.1002/jbm.a.32110, 89A:4, (1098-1107), Online publication date: 15-Jun-2009. Guo D, Xu K and Han Y (2009) The in situ synthesis of biphasic calcium phosphate scaffolds with controllable compositions, structures, and adjustable properties , Journal of Biomedical Materials Research Part A, 10.1002/jbm.a.31844, 88A:1, (43-52), Online publication date: 1-Jan-2009. Ma P and Wei G (2005) Polymer/Ceramic Composite Scaffolds for Bone Tissue Engineering Scaffolding In Tissue Engineering, 10.1201/9781420027563.pt3, (241-251), Online publication date: 19-Aug-2005. Ma P (2004) Tissue Engineering Encyclopedia of Polymer Science and Technology, 10.1002/0471440264.pst471 Rodrı́guez-Lorenzo L and Ferreira J (2004) Development of porous ceramic bodies for applications in tissue engineering and drug delivery systems, Materials Research Bulletin, 10.1016/j.materresbull.2003.09.014, 39:1, (83-91), Online publication date: 1-Jan-2004. Maquet V, Boccaccini A, Pravata L, Notingher I and Jérôme R (2003) Preparation, characterization, and in vitro degradation of bioresorbable and bioactive composites based on Bioglass®-filled polylactide foams , Journal of Biomedical Materials Research Part A, 10.1002/jbm.a.10587, 66A:2, (335-346), Online publication date: 1-Aug-2003. Ma P, Zhang R, Xiao G and Franceschi R (2000) Engineering new bone tissuein vitro on highly porous poly(?-hydroxyl acids)/hydroxyapatite composite scaffolds, Journal of Biomedical Materials Research, 10.1002/1097-4636(200102)54:2 3.0.CO;2-W, 54:2, (284-293), Online publication date: 1-Feb-2001. Fraitzl C, Leunig M, Demhartner T, Sckell A, Ganz R and Hofstetter W (2001) Development of Transplanted Fetal Bones, Clinical Orthopaedics and Related Research, 10.1097/00003086-200101000-00035, 382, (267-276), Online publication date: 1-Jan-2001. Babis G, Pantazopoulos T, Ioannidis T and Hartofilakidis G (2018) Revision of Failed Cemented Total Hip Arthroplasty Using the Charnley Technique and Implants, HIP International, 10.1177/112070009700700103, 7:1, (17-27), Online publication date: 1-Jan-1997. Request Permissions InformationCopyright 2013, SLACK IncorporatedPDF download
Referência(s)