Liver sinusoidal endothelial cell cross-priming is supported by CD4 T cell-derived IL-2
2016; Elsevier BV; Volume: 66; Issue: 5 Linguagem: Inglês
10.1016/j.jhep.2016.12.015
ISSN1600-0641
AutoresMichaela Maria Wittlich, Michael Dudek, Jan P. Böttcher, Oliver Schanz, Silke Hegenbarth, Tobias Bopp, Edgar Schmitt, Christian Kurts, Christoph Garbers, Stefan Rose‐John, Percy A. Knolle, Dirk Wohlleber,
Tópico(s)Immune Cell Function and Interaction
ResumoBackground & Aims Liver sinusoidal endothelial cells (LSECs) are prominent liver-resident antigen (cross-)presenting cells. LSEC cross-priming of naïve CD8 T cells does not require CD4 T cell help in contrast to priming by dendritic cells (DC) but leads to the formation of memory T cells that is preceded by transient Granzyme B (GzmB) expression. Here we provide evidence for a so far unrecognized CD4 T helper cell function in LSEC-induced CD8 T cell activation. Methods Naïve CD8 T cells and differentiated T helper 1 (Th1) cells were stimulated by antigen-presenting LSEC, and GzmB expression in CD8 T cells was determined by flow cytometry. To identify molecular pathways mediating this GzmB expression, mechanistic proof-of-concept experiments were conducted using stimulatory anti-CD3 antibody together with Hyper-IL-6. Results We demonstrate that LSECs simultaneously function in antigen co-presentation to CD8 and CD4 T cells. Such co-presentation revealed a function of Th1 cells to increase GzmB expression in CD8 T cells after LSEC but not DC cross-priming. IL-2 released from Th1 cells was required but not sufficient for rapid GzmB induction in CD8 T cells. T cell receptor together with IL-6 trans-signaling was necessary for IL-2 to mediate rapid GzmB induction. Conclusions Our findings indicate that LSECs can serve as a platform to facilitate CD4–CD8 T cell crosstalk enhancing the immune function of LSECs to cross-prime CD8 T cells. IL-6 trans-signaling-mediated responsiveness for IL-2 inducing sustained GzmB expression in CD8 T cells reveals unique mechanisms of CD4 T cell help and CD8 T cell differentiation through liver-resident antigen-presenting cells. Lay summary Our findings demonstrate that LSEC co-present antigen to CD8 and CD4 T cells and thereby enable CD4 T cell help for LSEC-priming of CD8 T cells. This CD4 T cell help selectively enhances the rapid upregulation of GzmB and effector function of LSEC-primed CD8 T cells thereby enhancing functional differentiation towards CD8 effector T cells. Liver sinusoidal endothelial cells (LSECs) are prominent liver-resident antigen (cross-)presenting cells. LSEC cross-priming of naïve CD8 T cells does not require CD4 T cell help in contrast to priming by dendritic cells (DC) but leads to the formation of memory T cells that is preceded by transient Granzyme B (GzmB) expression. Here we provide evidence for a so far unrecognized CD4 T helper cell function in LSEC-induced CD8 T cell activation. Naïve CD8 T cells and differentiated T helper 1 (Th1) cells were stimulated by antigen-presenting LSEC, and GzmB expression in CD8 T cells was determined by flow cytometry. To identify molecular pathways mediating this GzmB expression, mechanistic proof-of-concept experiments were conducted using stimulatory anti-CD3 antibody together with Hyper-IL-6. We demonstrate that LSECs simultaneously function in antigen co-presentation to CD8 and CD4 T cells. Such co-presentation revealed a function of Th1 cells to increase GzmB expression in CD8 T cells after LSEC but not DC cross-priming. IL-2 released from Th1 cells was required but not sufficient for rapid GzmB induction in CD8 T cells. T cell receptor together with IL-6 trans-signaling was necessary for IL-2 to mediate rapid GzmB induction. Our findings indicate that LSECs can serve as a platform to facilitate CD4–CD8 T cell crosstalk enhancing the immune function of LSECs to cross-prime CD8 T cells. IL-6 trans-signaling-mediated responsiveness for IL-2 inducing sustained GzmB expression in CD8 T cells reveals unique mechanisms of CD4 T cell help and CD8 T cell differentiation through liver-resident antigen-presenting cells.
Referência(s)