Artigo Acesso aberto Revisado por pares

m6A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition

2017; Nature Portfolio; Volume: 542; Issue: 7642 Linguagem: Inglês

10.1038/nature21355

ISSN

1476-4687

Autores

Boxuan Zhao, Xiao Wang, Alana V. Beadell, Zhike Lu, Hailing Shi, Adam Kuuspalu, Robert K. Ho, Chuan He,

Tópico(s)

Cardiac Structural Anomalies and Repair

Resumo

The maternal-to-zygotic transition (MZT) is one of the most profound and tightly orchestrated processes during the early life of embryos, yet factors that shape the temporal pattern of vertebrate MZT are largely unknown. Here we show that over one-third of zebrafish maternal messenger RNAs (mRNAs) can be N6-methyladenosine (m6A) modified, and the clearance of these maternal mRNAs is facilitated by an m6A-binding protein, Ythdf2. Removal of Ythdf2 in zebrafish embryos decelerates the decay of m6A-modified maternal mRNAs and impedes zygotic genome activation. These embryos fail to initiate timely MZT, undergo cell-cycle pause, and remain developmentally delayed throughout larval life. Our study reveals m6A-dependent RNA decay as a previously unidentified maternally driven mechanism that regulates maternal mRNA clearance during zebrafish MZT, highlighting the critical role of m6A mRNA methylation in transcriptome switching and animal development.

Referência(s)