Artigo Acesso aberto Revisado por pares

UNIQUENESS OF THE WELDING PROBLEM FOR SLE AND LIOUVILLE QUANTUM GRAVITY

2019; Cambridge University Press; Volume: 20; Issue: 3 Linguagem: Inglês

10.1017/s1474748019000331

ISSN

1475-3030

Autores

Oliver McEnteggart, Jason Miller, Wei Qian,

Tópico(s)

Geometric Analysis and Curvature Flows

Resumo

Abstract We give a simple set of geometric conditions on curves $\unicode[STIX]{x1D702}$ , $\widetilde{\unicode[STIX]{x1D702}}$ in $\mathbf{H}$ from $0$ to $\infty$ so that if $\unicode[STIX]{x1D711}:\mathbf{H}\rightarrow \mathbf{H}$ is a homeomorphism which is conformal off $\unicode[STIX]{x1D702}$ with $\unicode[STIX]{x1D711}(\unicode[STIX]{x1D702})=\widetilde{\unicode[STIX]{x1D702}}$ then $\unicode[STIX]{x1D711}$ is a conformal automorphism of $\mathbf{H}$ . Our motivation comes from the fact that it is possible to apply our result to random conformal welding problems related to the Schramm–Loewner evolution (SLE) and Liouville quantum gravity (LQG). In particular, we show that if $\unicode[STIX]{x1D702}$ is a non-space-filling $\text{SLE}_{\unicode[STIX]{x1D705}}$ curve in $\mathbf{H}$ from $0$ to $\infty$ , and $\unicode[STIX]{x1D711}$ is a homeomorphism which is conformal on $\mathbf{H}\setminus \unicode[STIX]{x1D702}$ , and $\unicode[STIX]{x1D711}(\unicode[STIX]{x1D702})$ , $\unicode[STIX]{x1D702}$ are equal in distribution, then $\unicode[STIX]{x1D711}$ is a conformal automorphism of $\mathbf{H}$ . Applying this result for $\unicode[STIX]{x1D705}=4$ establishes that the welding operation for critical ( $\unicode[STIX]{x1D6FE}=2$ ) LQG is well defined. Applying it for $\unicode[STIX]{x1D705}\in (4,8)$ gives a new proof that the welding of two independent $\unicode[STIX]{x1D705}/4$ -stable looptrees of quantum disks to produce an $\text{SLE}_{\unicode[STIX]{x1D705}}$ on top of an independent $4/\sqrt{\unicode[STIX]{x1D705}}$ -LQG surface is well defined.

Referência(s)