Artigo Acesso aberto Revisado por pares

A note on acoustic turbulence

2019; Cambridge University Press; Volume: 874; Linguagem: Inglês

10.1017/jfm.2019.523

ISSN

1469-7645

Autores

Erik Lindborg,

Tópico(s)

Meteorological Phenomena and Simulations

Resumo

We consider a three-dimensional acoustic field of an ideal gas in which all entropy production is confined to weak shocks and show that similar scaling relations hold for such a field as for forced Burgers turbulence, where the shock amplitude scales as $(\unicode[STIX]{x1D716}d)^{1/3}$ and the $p$ th-order structure function scales as $(\unicode[STIX]{x1D716}d)^{p/3}r/d$ , $\unicode[STIX]{x1D716}$ being the mean energy dissipation per unit mass, $d$ the mean distance between the shocks and $r$ the separation distance. However, for the acoustic field, $\unicode[STIX]{x1D716}$ should be replaced by $\unicode[STIX]{x1D716}+\unicode[STIX]{x1D712}$ , where $\unicode[STIX]{x1D712}$ is associated with entropy production due to heat conduction. In particular, the third-order longitudinal structure function scales as $\langle \unicode[STIX]{x1D6FF}u_{r}^{3}\rangle =-C(\unicode[STIX]{x1D716}+\unicode[STIX]{x1D712})r$ , where $C$ takes the value $12/5(\unicode[STIX]{x1D6FE}+1)$ in the weak shock limit, $\unicode[STIX]{x1D6FE}=c_{p}/c_{v}$ being the ratio between the specific heats at constant pressure and constant volume.

Referência(s)