Artigo Acesso aberto Revisado por pares

A minimal construct of nuclear-import receptor Karyopherin-β2 defines the regions critical for chaperone and disaggregation activity

2022; Elsevier BV; Volume: 299; Issue: 2 Linguagem: Inglês

10.1016/j.jbc.2022.102806

ISSN

1083-351X

Autores

Charlotte M. Fare, Kevin Rhine, Andrew Lam, Sua Myong, James Shorter,

Tópico(s)

Neurogenetic and Muscular Disorders Research

Resumo

Karyopherin-β2 (Kapβ2) is a nuclear-import receptor that recognizes proline-tyrosine nuclear localization signals of diverse cytoplasmic cargo for transport to the nucleus. Kapβ2 cargo includes several disease-linked RNA-binding proteins with prion-like domains, such as FUS, TAF15, EWSR1, hnRNPA1, and hnRNPA2. These RNA-binding proteins with prion-like domains are linked via pathology and genetics to debilitating degenerative disorders, including amyotrophic lateral sclerosis, frontotemporal dementia, and multisystem proteinopathy. Remarkably, Kapβ2 prevents and reverses aberrant phase transitions of these cargoes, which is cytoprotective. However, the molecular determinants of Kapβ2 that enable these activities remain poorly understood, particularly from the standpoint of nuclear-import receptor architecture. Kapβ2 is a super-helical protein comprised of 20 HEAT repeats. Here, we design truncated variants of Kapβ2 and assess their ability to antagonize FUS aggregation and toxicity in yeast and FUS condensation at the pure protein level and in human cells. We find that HEAT repeats 8 to 20 of Kapβ2 recapitulate all salient features of Kapβ2 activity. By contrast, Kapβ2 truncations lacking even a single cargo-binding HEAT repeat display reduced activity. Thus, we define a minimal Kapβ2 construct for delivery in adeno-associated viruses as a potential therapeutic for amyotrophic lateral sclerosis/frontotemporal dementia, multisystem proteinopathy, and related disorders. Karyopherin-β2 (Kapβ2) is a nuclear-import receptor that recognizes proline-tyrosine nuclear localization signals of diverse cytoplasmic cargo for transport to the nucleus. Kapβ2 cargo includes several disease-linked RNA-binding proteins with prion-like domains, such as FUS, TAF15, EWSR1, hnRNPA1, and hnRNPA2. These RNA-binding proteins with prion-like domains are linked via pathology and genetics to debilitating degenerative disorders, including amyotrophic lateral sclerosis, frontotemporal dementia, and multisystem proteinopathy. Remarkably, Kapβ2 prevents and reverses aberrant phase transitions of these cargoes, which is cytoprotective. However, the molecular determinants of Kapβ2 that enable these activities remain poorly understood, particularly from the standpoint of nuclear-import receptor architecture. Kapβ2 is a super-helical protein comprised of 20 HEAT repeats. Here, we design truncated variants of Kapβ2 and assess their ability to antagonize FUS aggregation and toxicity in yeast and FUS condensation at the pure protein level and in human cells. We find that HEAT repeats 8 to 20 of Kapβ2 recapitulate all salient features of Kapβ2 activity. By contrast, Kapβ2 truncations lacking even a single cargo-binding HEAT repeat display reduced activity. Thus, we define a minimal Kapβ2 construct for delivery in adeno-associated viruses as a potential therapeutic for amyotrophic lateral sclerosis/frontotemporal dementia, multisystem proteinopathy, and related disorders. Karyopherin-β2 (Kapβ2; also known as Transportin 1) is a nuclear-import receptor (NIR) that transports proteins bearing a proline-tyrosine nuclear localization signal (PY-NLS) from the cytoplasm to the nucleus (1Lee B.J. Cansizoglu A.E. Suel K.E. Louis T.H. Zhang Z. Chook Y.M. Rules for nuclear localization sequence recognition by Karyopherin beta 2.Cell. 2006; 126: 543-558Abstract Full Text Full Text PDF PubMed Scopus (423) Google Scholar, 2Soniat M. Chook Y.M. Nuclear localization signals for four distinct Karyopherin-beta nuclear import systems.Biochem. J. 2015; 468: 353-362Crossref PubMed Scopus (115) Google Scholar, 3Wing C.E. Fung H.Y.J. Chook Y.M. Karyopherin-mediated nucleocytoplasmic transport.Nat. Rev. Mol. Cell Biol. 2022; 23: 307-328Crossref PubMed Scopus (21) Google Scholar, 4Xu D. Farmer A. Chook Y.M. Recognition of nuclear targeting signals by Karyopherin-beta proteins.Curr. Opin. Struct. Biol. 2010; 20: 782-790Crossref PubMed Scopus (164) Google Scholar). Kapβ2, like other NIRs, promotes nuclear import based on the presence of an asymmetric Ran gradient (3Wing C.E. Fung H.Y.J. Chook Y.M. Karyopherin-mediated nucleocytoplasmic transport.Nat. Rev. Mol. Cell Biol. 2022; 23: 307-328Crossref PubMed Scopus (21) Google Scholar, 5Gorlich D. Pante N. Kutay U. Aebi U. Bischoff F.R. Identification of different roles for RanGDP and RanGTP in nuclear protein import.EMBO J. 1996; 15: 5584-5594Crossref PubMed Google Scholar). Ran is a small GTPase, and its GTPase-activating protein, RanGAP1, is restricted to the cytoplasm, whereas its guanine-nucleotide-exchange factor, RCC1, is localized to the nucleus (3Wing C.E. Fung H.Y.J. Chook Y.M. Karyopherin-mediated nucleocytoplasmic transport.Nat. Rev. Mol. Cell Biol. 2022; 23: 307-328Crossref PubMed Scopus (21) Google Scholar, 5Gorlich D. Pante N. Kutay U. Aebi U. Bischoff F.R. Identification of different roles for RanGDP and RanGTP in nuclear protein import.EMBO J. 1996; 15: 5584-5594Crossref PubMed Google Scholar). Thus, Ran-GDP is predominant in the cytoplasm, whereas Ran-GTP is predominant in the nucleus (3Wing C.E. Fung H.Y.J. Chook Y.M. Karyopherin-mediated nucleocytoplasmic transport.Nat. Rev. Mol. Cell Biol. 2022; 23: 307-328Crossref PubMed Scopus (21) Google Scholar, 5Gorlich D. Pante N. Kutay U. Aebi U. Bischoff F.R. Identification of different roles for RanGDP and RanGTP in nuclear protein import.EMBO J. 1996; 15: 5584-5594Crossref PubMed Google Scholar, 6Guo L. Fare C.M. Shorter J. Therapeutic dissolution of aberrant phases by nuclear-import receptors.Trends Cell Biol. 2019; 29: 308-322Abstract Full Text Full Text PDF PubMed Scopus (35) Google Scholar). Kapβ2 has a low affinity for Ran-GDP, which permits Kapβ2 interactions with cargo in the cytoplasm (3Wing C.E. Fung H.Y.J. Chook Y.M. Karyopherin-mediated nucleocytoplasmic transport.Nat. Rev. Mol. Cell Biol. 2022; 23: 307-328Crossref PubMed Scopus (21) Google Scholar, 7Chook Y.M. Blobel G. Structure of the nuclear transport complex Karyopherin-beta2-Ran x GppNHp.Nature. 1999; 399: 230-237Crossref PubMed Scopus (291) Google Scholar). Once in the nucleus, Kapβ2 is engaged tightly by Ran-GTP, which elicits a conformational change in Kapβ2 that releases cargo and liberates Kapβ2 for repeated rounds of nuclear import (3Wing C.E. Fung H.Y.J. Chook Y.M. Karyopherin-mediated nucleocytoplasmic transport.Nat. Rev. Mol. Cell Biol. 2022; 23: 307-328Crossref PubMed Scopus (21) Google Scholar, 7Chook Y.M. Blobel G. Structure of the nuclear transport complex Karyopherin-beta2-Ran x GppNHp.Nature. 1999; 399: 230-237Crossref PubMed Scopus (291) Google Scholar, 8Nakielny S. Dreyfuss G. Import and export of the nuclear protein import receptor transportin by a mechanism independent of GTP hydrolysis.Curr. Biol. 1998; 8: 89-95Abstract Full Text Full Text PDF PubMed Google Scholar, 9Nakielny S. Siomi M.C. Siomi H. Michael W.M. Pollard V. Dreyfuss G. Transportin: nuclear transport receptor of a novel nuclear protein import pathway.Exp. Cell Res. 1996; 229: 261-266Crossref PubMed Scopus (93) Google Scholar, 10Siomi M.C. Eder P.S. Kataoka N. Wan L. Liu Q. Dreyfuss G. Transportin-mediated nuclear import of heterogeneous nuclear RNP proteins.J. Cell Biol. 1997; 138: 1181-1192Crossref PubMed Scopus (204) Google Scholar). The best-characterized class of cargo recognized by Kapβ2 are proteins bearing a PY-NLS (1Lee B.J. Cansizoglu A.E. Suel K.E. Louis T.H. Zhang Z. Chook Y.M. Rules for nuclear localization sequence recognition by Karyopherin beta 2.Cell. 2006; 126: 543-558Abstract Full Text Full Text PDF PubMed Scopus (423) Google Scholar, 2Soniat M. Chook Y.M. Nuclear localization signals for four distinct Karyopherin-beta nuclear import systems.Biochem. J. 2015; 468: 353-362Crossref PubMed Scopus (115) Google Scholar, 11Pollard V.W. Michael W.M. Nakielny S. Siomi M.C. Wang F. Dreyfuss G. A novel receptor-mediated nuclear protein import pathway.Cell. 1996; 86: 985-994Abstract Full Text Full Text PDF PubMed Scopus (578) Google Scholar, 12Soniat M. Chook Y.M. Karyopherin-β2 recognition of a PY-NLS variant that lacks the proline-tyrosine motif.Structure. 2016; 24: 1802-1809Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar, 13Süel K.E. Gu H. Chook Y.M. Modular organization and combinatorial energetics of proline-tyrosine nuclear localization signals.PLoS Biol. 2008; 6e137Crossref PubMed Scopus (67) Google Scholar, 14Zhang Z.C. Chook Y.M. Structural and energetic basis of ALS-causing mutations in the atypical proline-tyrosine nuclear localization signal of the fused in sarcoma protein (FUS).Proc. Natl. Acad. Sci. U. S. A. 2012; 109: 12017-12021Crossref PubMed Scopus (100) Google Scholar). The PY-NLS is defined by three distinct epitopes that each contribute to cargo-recognition. A hydrophobic or basic motif is epitope 1, which is followed by a R-X2–5-PY motif where R-X2–5 is epitope 2 and the C-terminal PY is epitope 3 (1Lee B.J. Cansizoglu A.E. Suel K.E. Louis T.H. Zhang Z. Chook Y.M. Rules for nuclear localization sequence recognition by Karyopherin beta 2.Cell. 2006; 126: 543-558Abstract Full Text Full Text PDF PubMed Scopus (423) Google Scholar, 12Soniat M. Chook Y.M. Karyopherin-β2 recognition of a PY-NLS variant that lacks the proline-tyrosine motif.Structure. 2016; 24: 1802-1809Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar, 13Süel K.E. Gu H. Chook Y.M. Modular organization and combinatorial energetics of proline-tyrosine nuclear localization signals.PLoS Biol. 2008; 6e137Crossref PubMed Scopus (67) Google Scholar). Kapβ2 was initially described with respect to its role in nuclear import (7Chook Y.M. Blobel G. Structure of the nuclear transport complex Karyopherin-beta2-Ran x GppNHp.Nature. 1999; 399: 230-237Crossref PubMed Scopus (291) Google Scholar, 10Siomi M.C. Eder P.S. Kataoka N. Wan L. Liu Q. Dreyfuss G. Transportin-mediated nuclear import of heterogeneous nuclear RNP proteins.J. Cell Biol. 1997; 138: 1181-1192Crossref PubMed Scopus (204) Google Scholar, 11Pollard V.W. Michael W.M. Nakielny S. Siomi M.C. Wang F. Dreyfuss G. A novel receptor-mediated nuclear protein import pathway.Cell. 1996; 86: 985-994Abstract Full Text Full Text PDF PubMed Scopus (578) Google Scholar, 15Bonifaci N. Moroianu J. Radu A. Blobel G. Karyopherin beta2 mediates nuclear import of a mRNA binding protein.Proc. Natl. Acad. Sci. U. S. A. 1997; 94: 5055-5060Crossref PubMed Scopus (0) Google Scholar). More recently, Kapβ2 has been defined as a potent molecular chaperone that can prevent and reverse aberrant phase transitions of its specific cargo (16Guo L. Kim H.J. Wang H. Monaghan J. Freyermuth F. Sung J.C. et al.Nuclear-import receptors reverse aberrant phase transitions of RNA-binding proteins with prion-like domains.Cell. 2018; 173: 677-692.e20Abstract Full Text Full Text PDF PubMed Scopus (258) Google Scholar, 17Hofweber M. Hutten S. Bourgeois B. Spreitzer E. Niedner-Boblenz A. Schifferer M. et al.Phase separation of FUS is suppressed by its nuclear import receptor and arginine methylation.Cell. 2018; 173: 706-719.e13Abstract Full Text Full Text PDF PubMed Scopus (337) Google Scholar, 18Qamar S. Wang G. Randle S.J. Ruggeri F.S. Varela J.A. Lin J.Q. et al.FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation-pi interactions.Cell. 2018; 173: 720-734.e15Abstract Full Text Full Text PDF PubMed Scopus (429) Google Scholar, 19Yoshizawa T. Ali R. Jiou J. Fung H.Y.J. Burke K.A. Kim S.J. et al.Nuclear import receptor inhibits phase separation of FUS through binding to multiple sites.Cell. 2018; 173: 693-705.e22Abstract Full Text Full Text PDF PubMed Scopus (186) Google Scholar, 20Niaki A.G. Sarkar J. Cai X. Rhine K. Vidaurre V. Guy B. et al.Loss of dynamic RNA interaction and aberrant phase separation induced by two distinct types of ALS/FTD-linked FUS mutations.Mol. Cell. 2020; 77: 82-94.e4Abstract Full Text Full Text PDF PubMed Scopus (71) Google Scholar, 21Rhine K. Dasovich M. Yoniles J. Badiee M. Skanchy S. Ganser L.R. et al.Poly(ADP-ribose) drives condensation of FUS via a transient interaction.Mol. Cell. 2022; 82: 969-985.e11Abstract Full Text Full Text PDF PubMed Scopus (1) Google Scholar, 22Baade I. Hutten S. Sternburg E.L. Porschke M. Hofweber M. Dormann D. et al.The RNA-binding protein FUS is chaperoned and imported into the nucleus by a network of import receptors.J. Biol. Chem. 2021; 296: 100659Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar, 23Gonzalez A. Mannen T. Cagatay T. Fujiwara A. Matsumura H. Niesman A.B. et al.Mechanism of Karyopherin-beta2 binding and nuclear import of ALS variants FUS(P525L) and FUS(R495X).Sci. Rep. 2021; 11: 3754Crossref PubMed Scopus (15) Google Scholar, 24Rhine K. Makurath M.A. Liu J. Skanchy S. Lopez C. Catalan K.F. et al.ALS/FTLD-linked mutations in FUS glycine residues cause accelerated gelation and reduced interactions with wild-type FUS.Mol. Cell. 2020; 80: 666-681.e8Abstract Full Text Full Text PDF PubMed Scopus (30) Google Scholar). The newly appreciated chaperone and disaggregation activity of Kapβ2 could have therapeutic utility (6Guo L. Fare C.M. Shorter J. Therapeutic dissolution of aberrant phases by nuclear-import receptors.Trends Cell Biol. 2019; 29: 308-322Abstract Full Text Full Text PDF PubMed Scopus (35) Google Scholar, 25Darling A.L. Shorter J. Combating deleterious phase transitions in neurodegenerative disease.Biochim. Biophys. Acta Mol. Cell Res. 2021; 1868: 118984Crossref PubMed Scopus (28) Google Scholar, 26Fare C.M. Shorter J. (Dis)Solving the problem of aberrant protein states.Dis. Model. Mech. 2021; 14dmm048983Crossref PubMed Scopus (10) Google Scholar, 27Odeh H.M. Fare C.M. Shorter J. Nuclear-import receptors counter deleterious phase transitions in neurodegenerative disease.J. Mol. Biol. 2022; 434: 167220Crossref PubMed Scopus (6) Google Scholar, 28Portz B. Lee B.L. Shorter J. FUS and TDP-43 phases in health and disease.Trends Biochem. Sci. 2021; 46: 550-563Abstract Full Text Full Text PDF PubMed Scopus (61) Google Scholar). Indeed, several of the cargo recognized by Kapβ2 are prominent RNA-binding proteins (RBPs) with prion-like domains (PrLDs), which are connected to neurodegenerative disease via both pathology and genetics, including FUS, hnRNPA1, hnRNPA2, TAF15, and EWSR1 (8Nakielny S. Dreyfuss G. Import and export of the nuclear protein import receptor transportin by a mechanism independent of GTP hydrolysis.Curr. Biol. 1998; 8: 89-95Abstract Full Text Full Text PDF PubMed Google Scholar, 10Siomi M.C. Eder P.S. Kataoka N. Wan L. Liu Q. Dreyfuss G. Transportin-mediated nuclear import of heterogeneous nuclear RNP proteins.J. Cell Biol. 1997; 138: 1181-1192Crossref PubMed Scopus (204) Google Scholar, 11Pollard V.W. Michael W.M. Nakielny S. Siomi M.C. Wang F. Dreyfuss G. A novel receptor-mediated nuclear protein import pathway.Cell. 1996; 86: 985-994Abstract Full Text Full Text PDF PubMed Scopus (578) Google Scholar, 15Bonifaci N. Moroianu J. Radu A. Blobel G. Karyopherin beta2 mediates nuclear import of a mRNA binding protein.Proc. Natl. Acad. Sci. U. S. A. 1997; 94: 5055-5060Crossref PubMed Scopus (0) Google Scholar, 16Guo L. Kim H.J. Wang H. Monaghan J. Freyermuth F. Sung J.C. et al.Nuclear-import receptors reverse aberrant phase transitions of RNA-binding proteins with prion-like domains.Cell. 2018; 173: 677-692.e20Abstract Full Text Full Text PDF PubMed Scopus (258) Google Scholar, 29Fridell R.A. Truant R. Thorne L. Benson R.E. Cullen B.R. Nuclear import of hnRNP A1 is mediated by a novel cellular cofactor related to karyopherin-beta.J. Cell Sci. 1997; 110: 1325-1331Crossref PubMed Google Scholar, 30King O.D. Gitler A.D. Shorter J. The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease.Brain Res. 2012; 1462: 61-80Crossref PubMed Scopus (452) Google Scholar, 31Li Y.R. King O.D. Shorter J. Gitler A.D. Stress granules as crucibles of ALS pathogenesis.J. Cell Biol. 2013; 201: 361-372Crossref PubMed Scopus (586) Google Scholar, 32Cushman M. Johnson B.S. King O.D. Gitler A.D. Shorter J. Prion-like disorders: blurring the divide between transmissibility and infectivity.J. Cell Sci. 2010; 123: 1191-1201Crossref PubMed Scopus (235) Google Scholar, 33Gitler A.D. Shorter J. RNA-binding proteins with prion-like domains in ALS and FTLD-U.Prion. 2011; 5: 179-187Crossref PubMed Scopus (114) Google Scholar, 34March Z.M. King O.D. Shorter J. Prion-like domains as epigenetic regulators, scaffolds for subcellular organization, and drivers of neurodegenerative disease.Brain Res. 2016; 1647: 9-18Crossref PubMed Scopus (142) Google Scholar). In particular, mutations in genes encoding RBPs with PrLDs can cause amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), multisystem proteinopathy (MSP), oculopharyngeal muscular dystrophy, hereditary motor neuropathy, and related disorders (35Harrison A.F. Shorter J. RNA-binding proteins with prion-like domains in health and disease.Biochem. J. 2017; 474: 1417-1438Crossref PubMed Scopus (240) Google Scholar, 36Kapeli K. Martinez F.J. Yeo G.W. Genetic mutations in RNA-binding proteins and their roles in ALS.Hum. Genet. 2017; 136: 1193-1214Crossref PubMed Scopus (117) Google Scholar, 37Couthouis J. Hart M.P. Erion R. King O.D. Diaz Z. Nakaya T. et al.Evaluating the role of the FUS/TLS-related gene EWSR1 in amyotrophic lateral sclerosis.Hum. Mol. Genet. 2012; 21: 2899-2911Crossref PubMed Scopus (202) Google Scholar, 38Couthouis J. Hart M.P. Shorter J. DeJesus-Hernandez M. Erion R. Oristano R. et al.A yeast functional screen predicts new candidate ALS disease genes.Proc. Natl. Acad. Sci. U. S. A. 2011; 108: 20881-20890Crossref PubMed Scopus (184) Google Scholar, 39Kim H.J. Kim N.C. Wang Y.D. Scarborough E.A. Moore J. Diaz Z. et al.Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS.Nature. 2013; 495: 467-473Crossref PubMed Scopus (985) Google Scholar, 40Beijer D. Kim H.J. Guo L. O'Donovan K. Mademan I. Deconinck T. et al.Characterization of HNRNPA1 mutations defines diversity in pathogenic mechanisms and clinical presentation.JCI Insight. 2021; 6e148363Crossref PubMed Scopus (14) Google Scholar, 41Kim H.J. Mohassel P. Donkervoort S. Guo L. O'Donovan K. Coughlin M. et al.Heterozygous frameshift variants in HNRNPA2B1 cause early-onset oculopharyngeal muscular dystrophy.Nat. Commun. 2022; 13: 2306Crossref PubMed Scopus (1) Google Scholar, 42Couthouis J. Raphael A.R. Daneshjou R. Gitler A.D. Targeted exon capture and sequencing in sporadic amyotrophic lateral sclerosis.PLoS Genet. 2014; 10e1004704Crossref PubMed Scopus (42) Google Scholar). In the postmortem brain tissue of ALS/FTD patients, specific nuclear RBPs with PrLDs have been found to be depleted from the nucleus and mislocalized and aggregated in the cytoplasm of degenerating neurons (37Couthouis J. Hart M.P. Erion R. King O.D. Diaz Z. Nakaya T. et al.Evaluating the role of the FUS/TLS-related gene EWSR1 in amyotrophic lateral sclerosis.Hum. Mol. Genet. 2012; 21: 2899-2911Crossref PubMed Scopus (202) Google Scholar, 38Couthouis J. Hart M.P. Shorter J. DeJesus-Hernandez M. Erion R. Oristano R. et al.A yeast functional screen predicts new candidate ALS disease genes.Proc. Natl. Acad. Sci. U. S. A. 2011; 108: 20881-20890Crossref PubMed Scopus (184) Google Scholar, 43Blokhuis A.M. Groen E.J. Koppers M. van den Berg L.H. Pasterkamp R.J. Protein aggregation in amyotrophic lateral sclerosis.Acta Neuropathol. 2013; 125: 777-794Crossref PubMed Scopus (355) Google Scholar, 44Ito D. Hatano M. Suzuki N. RNA binding proteins and the pathological cascade in ALS/FTD neurodegeneration.Sci. Transl. Med. 2017; 9eaah5436Crossref Scopus (53) Google Scholar, 45Mackenzie I.R. Rademakers R. Neumann M. TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia.Lancet Neurol. 2010; 9: 995-1007Abstract Full Text Full Text PDF PubMed Scopus (658) Google Scholar, 46Neumann M. Rademakers R. Roeber S. Baker M. Kretzschmar H.A. Mackenzie I.R. A new subtype of frontotemporal lobar degeneration with FUS pathology.Brain. 2009; 132: 2922-2931Crossref PubMed Scopus (546) Google Scholar, 47Tyzack G.E. Luisier R. Taha D.M. Neeves J. Modic M. Mitchell J.S. et al.Widespread FUS mislocalization is a molecular hallmark of amyotrophic lateral sclerosis.Brain. 2019; 142: 2572-2580Crossref PubMed Scopus (85) Google Scholar, 48Vance C. Scotter E.L. Nishimura A.L. Troakes C. Mitchell J.C. Kathe C. et al.ALS mutant FUS disrupts nuclear localization and sequesters wild-type FUS within cytoplasmic stress granules.Hum. Mol. Genet. 2013; 22: 2676-2688Crossref PubMed Scopus (151) Google Scholar, 49Kwiatkowski Jr., T.J. Bosco D.A. Leclerc A.L. Tamrazian E. Vanderburg C.R. Russ C. et al.Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis.Science. 2009; 323: 1205-1208Crossref PubMed Scopus (1956) Google Scholar). The manner by which cytoplasmic mislocalization of specific RBPs with PrLDs elicits neurodegeneration has two dimensions: (1) RBPs play an essential role in RNA metabolism (28Portz B. Lee B.L. Shorter J. FUS and TDP-43 phases in health and disease.Trends Biochem. Sci. 2021; 46: 550-563Abstract Full Text Full Text PDF PubMed Scopus (61) Google Scholar, 45Mackenzie I.R. Rademakers R. Neumann M. TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia.Lancet Neurol. 2010; 9: 995-1007Abstract Full Text Full Text PDF PubMed Scopus (658) Google Scholar, 50Hoell J.I. Larsson E. Runge S. Nusbaum J.D. Duggimpudi S. Farazi T.A. et al.RNA targets of wild-type and mutant FET family proteins.Nat. Struct. Mol. Biol. 2011; 18: 1428-1431Crossref PubMed Scopus (249) Google Scholar, 51Humphrey J. Birsa N. Milioto C. McLaughlin M. Ule A.M. Robaldo D. et al.FUS ALS-causative mutations impair FUS autoregulation and splicing factor networks through intron retention.Nucleic Acids Res. 2020; 48: 6889-6905Crossref PubMed Scopus (30) Google Scholar, 52Kamelgarn M. Chen J. Kuang L. Jin H. Kasarskis E.J. Zhu H. ALS mutations of FUS suppress protein translation and disrupt the regulation of nonsense-mediated decay.Proc. Natl. Acad. Sci. U. S. A. 2018; 115: E11904-E11913Crossref PubMed Scopus (79) Google Scholar), and their cytoplasmic mislocalization may elicit loss-of-function phenotypes that contribute to toxicity; and (2) the insoluble cytoplasmic forms of these RBPs may be intrinsically toxic (43Blokhuis A.M. Groen E.J. Koppers M. van den Berg L.H. Pasterkamp R.J. Protein aggregation in amyotrophic lateral sclerosis.Acta Neuropathol. 2013; 125: 777-794Crossref PubMed Scopus (355) Google Scholar, 53Korobeynikov V.A. Lyashchenko A.K. Blanco-Redondo B. Jafar-Nejad P. Shneider N.A. Antisense oligonucleotide silencing of FUS expression as a therapeutic approach in amyotrophic lateral sclerosis.Nat. Med. 2022; 28: 104-116Crossref PubMed Scopus (31) Google Scholar, 54Murakami T. Qamar S. Lin J.Q. Schierle G.S. Rees E. Miyashita A. et al.ALS/FTD mutation-induced phase transition of FUS liquid droplets and reversible hydrogels into irreversible hydrogels impairs RNP granule function.Neuron. 2015; 88: 678-690Abstract Full Text Full Text PDF PubMed Scopus (508) Google Scholar, 55Tsai Y.L. Coady T.H. Lu L. Zheng D. Alland I. Tian B. et al.ALS/FTD-associated protein FUS induces mitochondrial dysfunction by preferentially sequestering respiratory chain complex mRNAs.Genes Dev. 2020; 34: 785-805Crossref PubMed Scopus (5) Google Scholar, 56Verdile V. De Paola E. Paronetto M.P. Aberrant phase transitions: side effects and novel therapeutic strategies in human disease.Front. Genet. 2019; 10: 173Crossref PubMed Scopus (38) Google Scholar, 57Winklhofer K.F. Tatzelt J. Haass C. The two faces of protein misfolding: gain- and loss-of-function in neurodegenerative diseases.EMBO J. 2008; 27: 336-349Crossref PubMed Scopus (289) Google Scholar, 58Coady T.H. Manley J.L. ALS mutations in TLS/FUS disrupt target gene expression.Genes Dev. 2015; 29: 1696-1706Crossref PubMed Scopus (24) Google Scholar), indicating a gain-of-function mechanism of toxicity. Despite the potential risk of forming toxic assemblies, the ability for RBPs to self-assemble into phase-separated states also has biological utility (28Portz B. Lee B.L. Shorter J. FUS and TDP-43 phases in health and disease.Trends Biochem. Sci. 2021; 46: 550-563Abstract Full Text Full Text PDF PubMed Scopus (61) Google Scholar, 59Gomes E. Shorter J. The molecular language of membraneless organelles.J. Biol. Chem. 2019; 294: 7115-7127Abstract Full Text Full Text PDF PubMed Scopus (311) Google Scholar, 60Fare C.M. Villani A. Drake L.E. Shorter J. Higher-order organization of biomolecular condensates.Open Biol. 2021; 11: 210137Crossref PubMed Scopus (34) Google Scholar, 61Levone B.R. Lenzken S.C. Antonaci M. Maiser A. Rapp A. Conte F. et al.FUS-dependent liquid-liquid phase separation is important for DNA repair initiation.J. Cell Biol. 2021; 220e202008030Crossref PubMed Google Scholar). RBPs with PrLDs can mediate multivalent intermolecular contacts, allowing them to self-associate and condense into phase-separated bodies (28Portz B. Lee B.L. Shorter J. FUS and TDP-43 phases in health and disease.Trends Biochem. Sci. 2021; 46: 550-563Abstract Full Text Full Text PDF PubMed Scopus (61) Google Scholar, 56Verdile V. De Paola E. Paronetto M.P. Aberrant phase transitions: side effects and novel therapeutic strategies in human disease.Front. Genet. 2019; 10: 173Crossref PubMed Scopus (38) Google Scholar, 59Gomes E. Shorter J. The molecular language of membraneless organelles.J. Biol. Chem. 2019; 294: 7115-7127Abstract Full Text Full Text PDF PubMed Scopus (311) Google Scholar, 62Gasset-Rosa F. Lu S. Yu H. Chen C. Melamed Z. Guo L. et al.Cytoplasmic TDP-43 de-mixing independent of stress granules drives inhibition of nuclear import, loss of nuclear TDP-43, and cell death.Neuron. 2019; 102: 339-357.e7Abstract Full Text Full Text PDF PubMed Scopus (199) Google Scholar, 63Molliex A. Temirov J. Lee J. Coughlin M. Kanagaraj A.P. Kim H.J. et al.Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization.Cell. 2015; 163: 123-133Abstract Full Text Full Text PDF PubMed Scopus (1384) Google Scholar, 64Hallegger M. Chakrabarti A.M. Lee F.C.Y. Lee B.L. Amalietti A.G. Odeh H.M. et al.TDP-43 condensation properties specify its RNA-binding and regulatory repertoire.Cell. 2021; 184: 4680-4696.e22Abstract Full Text Full Text PDF PubMed Scopus (39) Google Scholar, 65Kato M. Han T.W. Xie S. Shi K. Du X. Wu L.C. et al.Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels.Cell. 2012; 149: 753-767Abstract Full Text Full Text PDF PubMed Scopus (1301) Google Scholar). In particular, RBPs with PrLDs like FUS and hnRNPA1 partition into stress granules (SGs), phase-separated membrane-less organelles that form in the cytoplasm in response to stress (16Guo L. Kim H.J. Wang H. Monaghan J. Freyermuth F. Sung J.C. et al.Nuclear-import receptors reverse aberrant phase transitions of RNA-binding proteins with prion-like domains.Cell. 2018; 173: 677-692.e20Abstract Full Text Full Text PDF PubMed Scopus (258) Google Scholar, 28Portz B. Lee B.L. Shorter J. FUS and TDP-43 phases in health and disease.Trends Biochem. Sci. 2021; 46: 550-563Abstract Full Text Full Text PDF PubMed Scopus (61) Google Scholar, 39Kim H.J. Kim N.C. Wang Y.D. Scarborough E.A. Moore J. Diaz Z. et al.Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS.Nature. 2013; 495: 467-473Crossref PubMed Scopus (985) Google Scholar, 56Verdile V. De Paola E. Paronetto M.P. Aberrant phase transitions: side effects and novel therapeutic strategies in human disease.Front. Genet. 2019; 10: 173Crossref PubMed Scopus (38) Google Scholar, 63Molliex A. Temirov J. Lee J. Coughlin M. Kanagaraj A.P. Kim H.J. et al.Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization.Cell. 2015; 163: 123-133Abstract Full Text Full Text PDF PubMed Scopus (1384) Google Scholar, 66Buchan J.R. Parker R. Eukaryotic stress granules: the ins and outs of translation.Mol. Cell. 2009; 36: 932-941Abstract Full Text Full Text PDF PubMed Scopus (988) Google Scholar, 67Mahboubi H. Stochaj U. Cytoplasmic stress granules: dynamic modulators of cell signaling and disease.Biochim. Biophys. Acta Mol. Basis Dis. 2017; 1863: 884-895Crossref PubMed Scopus (151) Google Scholar, 68Protter D.S.W. Parker R. Principles and properties of stress granules.Trends Cell Biol. 2016; 26: 668-679Abstract Full Text Full Text PDF PubMed Scopus (750) Google Scholar, 69Wolozin B. Ivanov P. Stress granules and neurodegeneration.Nat. Rev. Neurosci. 2019; 20: 649-666Crossref PubMed Scopus (229) Google Scholar). Dysregulation of SGs has been implicated in the appearance of cytoplasmic aggregates, which are associated with the development of ALS/FTD and MSP (31Li Y.R. King O.D. Shorter J. Gitler A.D. Stress granules as crucibles of ALS pathogenesis.J. Cell Biol. 2013; 201: 361-372Crossref PubMed Scopus (586) Google Scholar, 39Kim H.J. Kim N.C. Wang Y.D. Scarborough E.A. Moore J. Diaz Z. et al.Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS.Nature. 2013; 495: 467-473Crossref PubMed Scopus (985) Google Scholar, 56Verdile V. De Paola E. Paronetto M.P. Aberrant phase transitions: side effects and novel therapeutic strategies in human disease.Front. Genet. 2019; 10: 173Crossref PubMed Scopus (38) Google Scholar, 63Molliex A. Temirov J. Lee J. Coughlin M. Kanagaraj A.P. Kim H.J. et al.Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization.Cell. 2015; 163: 123-133Abstract Full Text Full Text PDF PubMed Scopus (1384) Google Scholar, 70Patel A. Lee H.O. Jawerth L. Maharana S. Jahnel M. Hein M.Y. et al.A liquid-to-solid pha

Referência(s)