Capítulo de livro

Introduction to Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller (1953) Equations of State Calculations by Fast Computing Machines. J. Chem. Phys.,21, 1087–1092. and Geman and Geman (1984) Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images. IEEE Trans. Pattern Anal. Machine Intelligence,6, 721–741.

1997; Springer Science+Business Media; Linguagem: Inglês

10.1007/978-1-4612-0667-5_6

ISSN

2197-568X

Autores

Peter J. Huber,

Tópico(s)

Gaussian Processes and Bayesian Inference

Resumo

The breakthrough to be discussed here occurred in two steps, separated in time by over three decades. The first, conceptually decisive step, but lacking direct relevance to mainstream statistics, was the invention of Markov Chain Monte Carlo methods by Metropolis et al. (1953). The second step, decisive for applications in statistics, occurred when Geman and Geman (1984) wrestled the seminal idea of Metropolis et al. from its statistical mechanics surroundings, modified it, and applied it to Bayesian modeling and the computation of posterior distributions in otherwise intractable situations.

Referência(s)
Altmetric
PlumX