Cooling of a moving steel strip by an array of round jets
1994; Wiley; Volume: 65; Issue: 12 Linguagem: Inglês
10.1002/srin.199401210
ISSN0177-4832
AutoresJ. Filipovic, R. Viskanta, F. P. Incropera, Timothy A. Veslocki,
Tópico(s)Heat Transfer and Boiling Studies
ResumoSteel ResearchVolume 65, Issue 12 p. 541-547 Metal working Cooling of a moving steel strip by an array of round jets Jovan Filipovic, Jovan Filipovic Heat Transfer Laboratory, School of Mechanical Engineering, Purdue University, West LafayetteSearch for more papers by this authorRaymond Viskanta, Raymond Viskanta Heat Transfer Laboratory, School of Mechanical Engineering, Purdue University, West LafayetteSearch for more papers by this authorFrank P. Incropera, Frank P. Incropera Heat Transfer Laboratory, School of Mechanical Engineering, Purdue University, West LafayetteSearch for more papers by this authorTimothy A. Veslocki, Timothy A. Veslocki Research Laboratories Inland Steel Company, East Chicago, USASearch for more papers by this author Jovan Filipovic, Jovan Filipovic Heat Transfer Laboratory, School of Mechanical Engineering, Purdue University, West LafayetteSearch for more papers by this authorRaymond Viskanta, Raymond Viskanta Heat Transfer Laboratory, School of Mechanical Engineering, Purdue University, West LafayetteSearch for more papers by this authorFrank P. Incropera, Frank P. Incropera Heat Transfer Laboratory, School of Mechanical Engineering, Purdue University, West LafayetteSearch for more papers by this authorTimothy A. Veslocki, Timothy A. Veslocki Research Laboratories Inland Steel Company, East Chicago, USASearch for more papers by this author First published: December 1994 https://doi.org/10.1002/srin.199401210Citations: 18AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstracten Starting from slabs of known dimensions and chemical composition in a hot strip mill, homogeneous strips of predetermined geometry and mechanical properties may be produced. While the geometry and the surface quality are influenced by the deformation process, mechanical properties depend on the cooling process applied immediately after the last stand. Accelerated cooling of steel strips is one of the best ways to achieve both high cooling efficiency and desirable product qualities. A mathematical model is developed to predict the thermal behaviour of steel strips cooled by an array of round jets. Parameters such as the arrangement of the cooling line, nozzle diameter, jet velocity and temperature, and the strip chemical composition (thermophysical properties), thickness and velocity are considered. The governing equation was solved numerically, and the boundary conditions were imposed in different cooling regimes along the cooling line in the form of experimentally and analytically obtained heat transfer coefficients. The mathematical model was validated by comparing predictions for an industrial cooling line with measured starting and coiling temperatures. Abstractde Sind Abmessungen und chemische Zusammensetzung von Brammen bekannt, so können homogene Bänder in vorausbestimmten Dimensionen und mechanischen Eigenschaften in der Warmbandstraße erzeugt werden. Während die Abmessungen und die Oberflächenqualität vom Umformprozeß beeinflußt werden, hängen die mechanischen Eigenschaften von der Art der Abkühlung hinter dem letzten Gerüst ab. Beschleunigte Abkühlung von Stahlband ist eine der besten Methoden, um sowohl eine hohe Kühlwirkung als auch die erwünschte Produktqualität zu erreichen. Ein mathematisches Modell ist entwickelt worden, mit dem das thermische Verhalten von Bandstahl, dessen Kühlung mit einer Reihe runder Spritzdüsen erfolgt, vorhergesagt werden kann. Parameter wie z. B. die Anordnung der Kühllinie, Düsendurchmesser, Strahlgeschwindigkeit und -temperatur, chemische Zusammensetzung des Bandes, Dicke und Geschwindigkeit werden berücksichtigt. Die maßgebliche Gleichung wurde numerisch gelöst, die Randbedingungen wurden in Form von experimentell und analytisch ermittelten Wärmeübergangskoeffizienten verschiedenen Kühlzyklen auferlegt. Verifikation des mathematischen Modells erfolgte durch Vergleich der Vorhersagen für eine industrielle Kühllinie mit gemessenen Start- und Haspeltemperaturen. References 1Kohring, F. C.: Iron Steel Eng. 62 (1985), p. 30. 2Tacke, G.; Litzke, H.; Raquet, E.: Accelerated Cooling of Steel, [ed.:] Southwick, The Metallurgical Society, Inc., Warendale, PA (1986), p. 35. 3Yanagi, K.: Trans. ISIJ 16 (1976), p. 11. 4Devadas, C.; Samarasekera, V. I.: Ironmak. Steelmak. 13 (1986), p. 321. 5Colas, R.; Sellars, C. M.: Proc. Intern. Symp. on Accelerated Cooling of Rolled Steel. Pergamon Press, London 3 (1987), p 121. 6Chen, S. J.; Biswas, K. S.; Han, F.; Satyanarayana, A.: Symp. of Modelling and Control of Manufacturing Process, ASME, New York, PED-44 (1990), p. 465. 7Filipovic, J.; Viskanta, R.; Incropera, F. P.; Veslocki, T. A.: steel res. 63 (1992) No. 10, p. 438. 8Ishigai, S.; Nakanishi, S.; Ochi, T.: Proc. 6th Intern. Heat Transfer Conf., Toronto, Canada 1 (1978), p. 445. 9Miyasaka, Y.; Inada, S.; Owase, Y.: Journ. Chemical Eng. Jap. 13 (1980), p. 29. 10Hatta, N.; Kokado, J.; Hanasaki, K.: Trans. ISIJ 23 (1983), p. 555. 11Ochi, T.; Nakanishi, S.; Kaji, M.; Ishigai, S.: Multi-Phase Flow and Heat Transfer III, Part A, Elsevier Science Publishers B. V., Amsterdam (1984), p. 671. 12Chen, S. J.; Kothari, J.: ASME Paper No.88-WA/NE- 4. 13Han, F.; Chen, S.; Chang, C.: ASME Winter Annual Meeting, Atlanta, Georgia (1991), p. 73. 14Nakanishi, S.; Ochi, T.; Taga, M.; Kaji, M.; Otsubo, H.: Proc. 21st National Heat Transfer Symp. of Japan, Kyoto, Japan (1984), p. 130. 15Lamvik, M.; Iden, B. A.: Heat Transfer [eds.:] u. Grigull, E. Hahne, K. Stephan and J. Straub, Hemisphere, Washington (1982), p. 369. 16Wolf, D. H.; Incropera, F. P.; Viskanta, R.: Advances in Heat Transfer 23 [ed.:] J. P. Harnett and T. F. Irvine, Academic Press, New York, 23 (1993), p. 1. 17Chen, S. J.; Tseng, A.; Han, F.: Heat Transfer in Metals and Containerless Processing and Manufacturing, ASME, New York (1991), p. 1. 18Viskanta, R.; Incropera, F. P.: Heat and Mass Transfer in Materials Processing, [eds.:] I. Tanasawa and N. Lior, Hemisphere Publishing Corp., Washington (1992), p. 455. 19Patankar, S. V.: Numerical Heat Transfer and Fluid Flow, McGraw-Hill, N. Y. (1980). 20Chappidi, P. R.; Gunnerson, F. S.: Int. J. Heat Mass Transf. 32 (1989), p. 1383. 21Labeish, V. G.; Dobrinskaya, T. A.: Steel in the USSR 19 (1989), p. 128. 22Filipovic, J.; Viskanta, R.; Incropera, F. P.: Int. J. Heat Mass Transfer (in press). Citing Literature Volume65, Issue12December 1994Pages 541-547 ReferencesRelatedInformation
Referência(s)