Relation of Body Size and Surface Area to Gas Exchange in Anurans
1968; University of Chicago Press; Volume: 41; Issue: 1 Linguagem: Inglês
10.1086/physzool.41.1.30158485
ISSN1937-4267
AutoresVictor H. Hutchison, Walter G. Whitford, Margaret A. Kohl,
Tópico(s)Amphibian and Reptile Biology
ResumoPrevious articleNext article No AccessRelation of Body Size and Surface Area to Gas Exchange in AnuransVictor H. Hutchison, Walter G. Whitford, and Margaret KohlVictor H. Hutchison, Walter G. Whitford, and Margaret KohlPDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmailPrint SectionsMoreDetailsFiguresReferencesCited by Volume 41, Number 1Jan., 1968 Article DOIhttps://doi.org/10.1086/physzool.41.1.30158485 Views: 662Total views on this site Citations: 141Citations are reported from Crossref Journal History This article was published in Physiological Zoology (1928-1998), which is continued by Physiological and Biochemical Zoology (1999-present). Copyright 1968 The University of ChicagoPDF download Crossref reports the following articles citing this article:S. Thomas Purucker, Marcía N. Snyder, Donna A. Glinski, Robin J. Van Meter, Kristina Garber, Emma A. Chelsvig, Michael J. Cyterski, Sumathy Sinnathamby, Elizabeth A. Paulukonis, W. Matthew Henderson Estimating dermal contact soil exposure for amphibians, Integrated Environmental Assessment and Management 19, no.11 (May 2022): 9–16.https://doi.org/10.1002/ieam.4619Emily F. Brown, Tamapuretu Mitaera, Martin Fronius COVID-19 and Liquid Homeostasis in the Lung—A Perspective through the Epithelial Sodium Channel (ENaC) Lens, Cells 11, no.1111 (May 2022): 1801.https://doi.org/10.3390/cells11111801Daniel S. Moen, Elisa Cabrera-Guzmán, Itzue W. Caviedes-Solis, Edna González-Bernal, Allison R. Hanna Phylogenetic analysis of adaptation in comparative physiology and biomechanics: overview and a case study of thermal physiology in treefrogs, Journal of Experimental Biology 225, no.Suppl_1Suppl_1 (Mar 2022).https://doi.org/10.1242/jeb.243292Zachary T. Vegso, Anila A. Kalonia, Skyler Stevens, Tracy A. G. Rittenhouse Salinity Conditions during the Larval Life Stage Affect Terrestrial Habitat Choice in Juvenile Wood Frogs (Lithobates sylvaticus), Journal of Herpetology 56, no.11 (Mar 2022).https://doi.org/10.1670/20-123Benjamin B. Johnson, Jeremy B. Searle, Jed P. Sparks Novel Allometric Estimators Improve Estimation Accuracy of Body Surface Area, Volume, and Surface Area-to-Volume Ratio in Lungless Salamanders (Urodela: Plethodontidae), Herpetologica 77, no.33 (Sep 2021).https://doi.org/10.1655/Herpetologica-D-21-00013.1Ryan B. MCWHINNIE, Jason P. SCKRABULIS, Thomas R. RAFFEL Temperature and mass scaling affect cutaneous and pulmonary respiratory performance in a diving frog, Integrative Zoology 16, no.55 (Jun 2021): 712–728.https://doi.org/10.1111/1749-4877.12551Jan-Peter Hildebrandt, Horst Bleckmann, Uwe Homberg Versorgung mit Sauerstoff (Atmung), (Mar 2021): 177–240.https://doi.org/10.1007/978-3-662-61595-9_4Lucas E. Kreiman, Jaiber J. Solano-Iguaran, Leonardo D. Bacigalupe, Daniel E. Naya Testing the metabolic homeostasis hypothesis in amphibians, Philosophical Transactions of the Royal Society B: Biological Sciences 374, no.17781778 (Aug 2019): 20180544.https://doi.org/10.1098/rstb.2018.0544Joseph C. Mitchell Victor Hobbs Hutchison, Copeia 107, no.22 (Apr 2019): 358.https://doi.org/10.1643/OT-19-225Luis Miguel Senzano, Denis Vieira Andrade Temperature and dehydration effects on metabolism, water uptake and the partitioning between respiratory and cutaneous evaporative water loss in a terrestrial toad, The Journal of Experimental Biology 221, no.2424 (Nov 2018): jeb188482.https://doi.org/10.1242/jeb.188482Michael D. Livingston, Vikram V. Bhargav, Andy J. Turko, Jonathan M. Wilson, Patricia A. Wright Widespread use of emersion and cutaneous ammonia excretion in Aplocheiloid killifishes, Proceedings of the Royal Society B: Biological Sciences 285, no.18841884 (Aug 2018): 20181496.https://doi.org/10.1098/rspb.2018.1496Eric J Gangloff, Rory S Telemeco High Temperature, Oxygen, and Performance: Insights from Reptiles and Amphibians, Integrative and Comparative Biology 58, no.11 (May 2018): 9–24.https://doi.org/10.1093/icb/icy005Francisco Herrerías-Azcué, Chris Blount, Mark Dickinson Temperature and evaporative water loss of leaf-sitting frogs: the role of reflection spectra, Biology Open 5, no.1212 (Oct 2016): 1799–1805.https://doi.org/10.1242/bio.021113Wilfried Klein, Lucianne Dabés, Vanessa Maria Gomes Bonfim, Leandro Magrini, Marcelo Felgueiras Napoli Allometric relationships between cutaneous surface area and body mass in anuran amphibians, Zoologischer Anzeiger - A Journal of Comparative Zoology 263 (Jul 2016): 45–54.https://doi.org/10.1016/j.jcz.2016.04.007Kaleigh E. Morrison, Danielle Strahl‐Heldreth, Stuart C. Clark‐Price Isoflurane, sevoflurane and desflurane use in cane toads ( Rhinella marina ), Veterinary Record Open 3, no.11 (Sep 2016).https://doi.org/10.1136/vetreco-2016-000185Stephainie Zec, Stuart C. Clark-Price, David A. Coleman, Mark A. Mitchell Loss and Return of Righting Reflex in American Green Tree Frogs (Hyla cinerea) after Topical Application of Compounded Sevoflurane or Isoflurane Jelly: A Pilot Study, Journal of Herpetological Medicine and Surgery 24, no.3-43-4 (Dec 2014): 72–76.https://doi.org/10.5818/1529-9651-24.3.72Robin J. Van Meter, Donna A. Glinski, Tao Hong, Mike Cyterski, W. Matthew Henderson, S. Thomas Purucker Estimating terrestrial amphibian pesticide body burden through dermal exposure, Environmental Pollution 193 (Oct 2014): 262–268.https://doi.org/10.1016/j.envpol.2014.07.003Guiying CHEN, Jiongyu LIU, Qiang DAI, Jianping JIANG Body Surface Area Prediction in Odorrana grahami, Asian Herpetological Research 5, no.11 (Mar 2014): 54–59.https://doi.org/10.3724/SP.J.1245.2014.00054Glenn J. Tattersall, Suzanne Currie, Danielle M. LeBlanc Pulmonary and cutaneous O 2 gas exchange: a student laboratory exercise in the frog, Advances in Physiology Education 37, no.11 (Mar 2013): 97–105.https://doi.org/10.1152/advan.00087.2012Steve Fryday, Helen Thompson Toxicity of pesticides to aquatic and terrestrial life stages of amphibians and occurrence, habitat use and exposure of amphibian species in agricultural environments, EFSA Supporting Publications 9, no.99 (Sep 2012).https://doi.org/10.2903/sp.efsa.2012.EN-343Shun Maekawa, Hitomi Iemura, Yuko Kuramochi, Nami Nogawa-Kosaka, Hironori Nishikawa, Takehito Okui, Youichi Aizawa, Takashi Kato Hepatic confinement of newly produced erythrocytes caused by low-temperature exposure in Xenopus laevis, Journal of Experimental Biology 215, no.1717 (Sep 2012): 3087–3095.https://doi.org/10.1242/jeb.072488LIXIA ZHANG, XIN LU Amphibians live longer at higher altitudes but not at higher latitudes, Biological Journal of the Linnean Society 106, no.33 (May 2012): 623–632.https://doi.org/10.1111/j.1095-8312.2012.01876.xZachary C. DeVries, Raymond P. Henry Effects of hypoxia on oxygen uptake and surfacing behavior in the giant aquatic salamander Siren lacertina, Marine and Freshwater Behaviour and Physiology 45, no.22 (Mar 2012): 135–143.https://doi.org/10.1080/10236244.2012.691244Leslie M. Sadowski-Fugitt, Christopher R. Tracy, Keith A. Christian, and Joseph B. Williams Cocoon and Epidermis of Australian Cyclorana Frogs Differ in Composition of Lipid Classes That Affect Water Loss, Physiological and Biochemical Zoology 85, no.11 (Jul 2015): 40–50.https://doi.org/10.1086/663695Casey A. Mueller, Jean M. P. Joss, Roger S. Seymour The energy cost of embryonic development in fishes and amphibians, with emphasis on new data from the Australian lungfish, Neoceratodus forsteri, Journal of Comparative Physiology B 181, no.11 (Jul 2010): 43–52.https://doi.org/10.1007/s00360-010-0501-yDonald C. Jackson, Gordon R. Ultsch Physiology of hibernation under the ice by turtles and frogs, Journal of Experimental Zoology Part A: Ecological Genetics and Physiology 313A, no.66 (Mar 2010): 311–327.https://doi.org/10.1002/jez.603Marvalee H. Wake, Maureen A. Donnelly A new lungless caecilian (Amphibia: Gymnophiona) from Guyana, Proceedings of the Royal Society B: Biological Sciences 277, no.16831683 (Nov 2009): 915–922.https://doi.org/10.1098/rspb.2009.1662José E. Carvalho, Carlos A. Navas, Isabel C. Pereira Energy and Water in Aestivating Amphibians, (Sep 2009): 141–169.https://doi.org/10.1007/978-3-642-02421-4_7An Tran-Duy, Johan W. Schrama, Anne A. van Dam, Johan A.J. Verreth Effects of oxygen concentration and body weight on maximum feed intake, growth and hematological parameters of Nile tilapia, Oreochromis niloticus, Aquaculture 275, no.1-41-4 (Mar 2008): 152–162.https://doi.org/10.1016/j.aquaculture.2007.12.024Sarah A Guénette, Pierre Hélie, Francis Beaudry, Pascal Vachon Eugenol for anesthesia of African clawed frogs (Xenopus laevis), Veterinary Anaesthesia and Analgesia 34, no.33 (May 2007): 164–170.https://doi.org/10.1111/j.1467-2995.2006.00316.xChelsea K. Ward, Arthur G. Appel, Mary T. Mendonça Metabolic measures of male southern toads (Bufo terrestris) exposed to coal combustion waste, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 143, no.33 (Mar 2006): 353–360.https://doi.org/10.1016/j.cbpa.2005.12.023Harvey B. Lillywhite Water relations of tetrapod integument, Journal of Experimental Biology 209, no.22 (Jan 2006): 202–226.https://doi.org/10.1242/jeb.02007M.S. Fernandes, H. Giusti, M.L. Glass An assessment of dead space in pulmonary ventilation of the toad Bufo schneideri, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 142, no.44 (Dec 2005): 446–450.https://doi.org/10.1016/j.cbpa.2005.09.011Atanas Todorov Atanasov The linear alometric relationship between total metabolic energy per life span and body mass of poikilothermic animals, Biosystems 82, no.22 (Nov 2005): 137–142.https://doi.org/10.1016/j.biosystems.2005.06.006Douglas S. Glazier Beyond the : variation in the intra- and interspecific scaling of metabolic rate in animals, Biological Reviews 80, no.0404 (Aug 2005): 611.https://doi.org/10.1017/S1464793105006834MATTHEW J. GRAY, LOREN M. SMITH, Russell INFLUENCE OF LAND USE ON POSTMETAMORPHIC BODY SIZE OF PLAYA LAKE AMPHIBIANS, Journal of Wildlife Management 69, no.22 (Apr 2005): 515–524.https://doi.org/10.2193/0022-541X(2005)069[0515:IOLUOP]2.0.CO;2James D McLister The metabolic cost of amplexus in the grey tree frog ( Hyla versicolor ): assessing the energetics of male mating success, Canadian Journal of Zoology 81, no.33 (Mar 2003): 388–394.https://doi.org/10.1139/z03-013S. L. Prassack, B. Bagatto, R. P. Henry Effects of temperature and aquatic P O2 on the physiology and behaviour of Apalone ferox and Chrysemys picta, Journal of Experimental Biology 204, no.1212 (Jun 2001): 2185–2195.https://doi.org/10.1242/jeb.204.12.2185C. BARKER JØRGENSEN Amphibian respiration and olfaction and their relationships: from Robert Townson (1794) to the present, Biological Reviews 75, no.33 (Jan 2007): 297–345.https://doi.org/10.1111/j.1469-185X.2000.tb00047.xBrian Bagatto, Raymond P Henry Bimodal respiration and ventilatory behavior in two species of Central American turtles: effects of forced submergence, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 126, no.11 (May 2000): 57–63.https://doi.org/10.1016/S1095-6433(00)00175-6Ping-Chun Lucy Hou, Shu-Ping Huang Metabolic and ventilatory responses to hypoxia in two altitudinal populations of the toad, Bufo bankorensis, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 124, no.44 (Dec 1999): 413–421.https://doi.org/10.1016/S1095-6433(99)00133-6Kênia C Bı́cego-Nahas, Luiz G.S Branco Seasonal changes in the cardiorespiratory responses to hypercarbia and temperature in the bullfrog, Rana catesbeiana, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 124, no.22 (Oct 1999): 221–229.https://doi.org/10.1016/S1095-6433(99)00119-1Leonard B. Kirschner Extrarenal Mechanisms in Hydromineral and Acid‐Base Regulation in Aquatic Vertebrates, (Jan 2011): 577–622.https://doi.org/10.1002/cphy.cp130109C. BARKER JØRGENSEN 200 YEARS OF AMPHIBIAN WATER ECONOMY: FROM ROBERT TOWNSON TO THE PRESENT, Biological Reviews 72, no.22 (Jan 2007): 153–237.https://doi.org/10.1111/j.1469-185X.1997.tb00013.xGordon R. Ultsch Gas exchange, hypercarbia and acid-base balance, paleoecology, and the evolutionary transition from water-breathing to air-breathing among vertebrates, Palaeogeography, Palaeoclimatology, Palaeoecology 123, no.1-41-4 (Jul 1996): 1–27.https://doi.org/10.1016/0031-0182(96)00121-6Y.M. Ihmied, E.W. Taylor Effect of temperature on surfacing behaviour in Xenopus laevis, Journal of Thermal Biology 20, no.1-21-2 (Feb 1995): 49–53.https://doi.org/10.1016/0306-4565(94)00026-FJ. N. Maina Comparative Pulmonary Morphology and Morphometry: The Functional Design of Respiratory Systems, (Jan 1994): 111–232.https://doi.org/10.1007/978-3-642-78598-6_4W. S. Liu Development of the respiratory swimbladder of Pangasius sutchi, Journal of Fish Biology 42, no.22 (Feb 1993): 159–167.https://doi.org/10.1111/j.1095-8649.1993.tb00318.xA.W. Pinder, D. Clemens, M.E. Feder Gas exchange in isolated perfused frog skin as a function of perfusion rate, Respiration Physiology 85, no.11 (Jul 1991): 1–14.https://doi.org/10.1016/0034-5687(91)90002-ZAugusto Shinya Abe, Luis Sérgio Garcia Response to temperature in the oxygen uptake of awake and dormant frogs (Amphibia, Leptodactylidae), Studies on Neotropical Fauna and Environment 26, no.33 (Jan 1991): 135–141.https://doi.org/10.1080/01650529109360845Timothy Z. Vitalis Pulmonary and cutaneous oxygen uptake and oxygen consumption of isolated skin in the frog, Rana pipiens, Respiration Physiology 81, no.33 (Sep 1990): 391–399.https://doi.org/10.1016/0034-5687(90)90119-JR. G. Boutilier Control and Co-Ordination of Gas Exchange in Bimodal Breathers, (Jan 1990): 279–345.https://doi.org/10.1007/978-3-642-75380-0_9T Takeda Cutaneous and gill O2 uptake in the carp, Cyprinus carpio, as a function of metabolic rate, Comparative Biochemistry and Physiology Part A: Physiology 95, no.33 (Jan 1990): 425–427.https://doi.org/10.1016/0300-9629(90)90243-LGary M. Malvin, Michael P. Hlastala Effects of environmental O2 on blood flow and diffusing capacity in amphibian skin, Respiration Physiology 76, no.22 (May 1989): 229–241.https://doi.org/10.1016/0034-5687(89)90100-XJ. N. Maina, G. M. O. Maloiy A scanning and transmission electron microscopic study of the lung of a caecilian Boulengerula taitanus, Journal of Zoology 215, no.44 (Mar 2009): 739–751.https://doi.org/10.1111/j.1469-7998.1988.tb02408.xE.Don Stevens Acclimation temperature markedly alters the motivation to feed in the toad, Bufo americanus, Journal of Thermal Biology 13, no.22 (Apr 1988): 73–78.https://doi.org/10.1016/0306-4565(88)90015-0J. N. Maina The morphology of the lung of the African lungfish, Protopterus aethiopicus, Cell and Tissue Research 250, no.11 (Oct 1987): 191–196.https://doi.org/10.1007/BF00214671C. Barker Jørgensen, H. Wind-Larsen Energetics of Growth in a Temperate Zone Toad, Bufo bufo : Effects of Growth Hormone, Acta Zoologica 68, no.22 (Jun 1987): 107–113.https://doi.org/10.1111/j.1463-6395.1987.tb00881.xJerry N. Stinner, Vaughan H. Shoemaker Cutaneous gas exchange and low evaporative water loss in the frogsPhyllomedusa sauvagei andChiromantis xerampelina, Journal of Comparative Physiology B 157, no.44 (Jan 1987): 423–427.https://doi.org/10.1007/BF00691825DIANNE B. SEALE Amphibia, (Jan 1987): 467–552.https://doi.org/10.1016/B978-0-12-544792-8.50012-7Graham Shelton, David R. Jones, William K. Milsom Control of Breathing in Ectothermic Vertebrates, (Jan 2011): 857–909.https://doi.org/10.1002/cphy.cp030228W. Geise, K. E. Linsenmair Adaptations of the reed frog Hyperolius viridiflavus (Amphibia, Anura, Hyperoliidae) to its arid environment, Oecologia 68, no.44 (Mar 1986): 542–548.https://doi.org/10.1007/BF00378769MARTIN E. FEDER, WARREN W. BURGGREN CUTANEOUS GAS EXCHANGE IN VERTEBRATES: DESIGN, PATTERNS, CONTROL AND IMPLICATIONS, Biological Reviews 60, no.11 (Feb 1985): 1–45.https://doi.org/10.1111/j.1469-185X.1985.tb00416.xRobert G. Boutilier Characterization Of The Intermittent Breathing Pattern In Xenopus Laevis, Journal of Experimental Biology 110, no.11 (May 1984): 291–309.https://doi.org/10.1242/jeb.110.1.291Alison Cree Breeding biology, respiration, and larval development of two introduced frogs ( Litoria raniformis and L. ewingi ), New Zealand Journal of Zoology 11, no.22 (Apr 1984): 179–187.https://doi.org/10.1080/03014223.1984.10423756Warren Burggren Transition of respiratory processes during amphibian metamorphosis: from egg to adult, (Jan 1984): 31–53.https://doi.org/10.1007/978-94-009-6536-2_3Rosemary McIndoe, D. G. Smith Functional morphology of gills in larval amphibians, (Jan 1984): 55–69.https://doi.org/10.1007/978-94-009-6536-2_4 Warren W. Burggren , Martin E. Feder , and Alan W. Pinder Temperature and the Balance between Aerial and Aquatic Respiration in Larvae of Rana berlandieri and Rana catesbeiana, Physiological Zoology 56, no.22 (Sep 2015): 263–273.https://doi.org/10.1086/physzool.56.2.30156058P. C. Withers, S. S. Hillman The effects of hypoxia on pulmonary function and maximal rates of oxygen consumption in two anuran amphibians, Journal of Comparative Physiology ? B 152, no.11 (Jan 1983): 125–129.https://doi.org/10.1007/BF00689736G. Shelton, R. G. Boutilier Apnoea in Amphibians and Reptiles, Journal of Experimental Biology 100, no.11 (Oct 1982): 245–273.https://doi.org/10.1242/jeb.100.1.245S. S. Hillman Effects of DL-propranolol on exercise heart rate and maximal rates of oxygen consumption inScaphiopus intermontanus, Experientia 38, no.88 (Aug 1982): 940–941.https://doi.org/10.1007/BF01953665Warren W. Burggren, Nigel H. West Changing respiratory importance of gills, lungs and skin during metamorphosis in the bullfrog rana catesbeiana, Respiration Physiology 47, no.22 (Feb 1982): 151–164.https://doi.org/10.1016/0034-5687(82)90108-6Theodore L. Taigen, Sharon B. Emerson, F. Harvey Pough Ecological correlates of anuran exercise physiology, Oecologia 52, no.11 (Jan 1982): 49–56.https://doi.org/10.1007/BF00349011Martin E. Feder Environmental variability and thermal acclimation of metabolism in tropical anurans, Journal of Thermal Biology 7, no.11 (Jan 1982): 23–28.https://doi.org/10.1016/0306-4565(82)90015-8Theodore L. Taigen, F. Harvey Pough Activity metabolism of the toad (Bufo americanus): Ecological consequences of ontogenetic change, Journal Of Comparative Physiology B 144, no.22 (Jan 1981): 247–252.https://doi.org/10.1007/BF00802763P.R Laming, M Austin Cardiac responses of the anurans, Bufo bufo and Rana pipiens, during behavioural arousal and fright, Comparative Biochemistry and Physiology Part A: Physiology 68, no.33 (Jan 1981): 515–518.https://doi.org/10.1016/0300-9629(81)90084-0Ralph C Mac Nally An analysis of factors affecting metabolic rates of two species of Ranidella (Anura), Comparative Biochemistry and Physiology Part A: Physiology 69, no.44 (Jan 1981): 731–737.https://doi.org/10.1016/0300-9629(81)90165-1Arthur V. Brown, Lloyd C. Fitzpatrick Metabolic acclimation to temperature in the ozark salamander Plethodon dorsalis angusticlavius, Comparative Biochemistry and Physiology Part A: Physiology 69, no.33 (Jan 1981): 499–503.https://doi.org/10.1016/0300-9629(81)93010-3Arthur V. Brown, Lloyd C. Fitzpatrick Thermal acclimation and metabolism in the gray-bellied salamander, Eurycea multiplicata griseogaster (plethodontidae), Comparative Biochemistry and Physiology Part A: Physiology 69, no.33 (Jan 1981): 505–509.https://doi.org/10.1016/0300-9629(81)93011-5Richard Moalli, Roy S. Meyers, Donald C. Jackson, Ronald W. Millard Skin circulation of the frog, Rana catesbeiana: Distribution and dynamics, Respiration Physiology 40, no.22 (May 1980): 137–148.https://doi.org/10.1016/0034-5687(80)90088-2 Kirk Miller , and Victor H. Hutchison Aerobic and Anaerobic Scope for Activity in the Giant Toad, Bufo marinus, Physiological Zoology 53, no.22 (Sep 2015): 170–175.https://doi.org/10.1086/physzool.53.2.30152580R. G. Boutilier, D. G. McDonald, D. P. Toews The Effects of Enforced Activity On Ventilation, Circulation and Blood Acid-Base Balance in the Aquatic Gill-Less Urodele, Cryptobranchus Alleganiensis ; A Comparison with the Semi-Terrestrial Anuran, Bufo Marinus, Journal of Experimental Biology 84, no.11 (Feb 1980): 289–302.https://doi.org/10.1242/jeb.84.1.289 F. Harvey Pough The Advantages of Ectothermy for Tetrapods, The American Naturalist 115, no.11 (Oct 2015): 92–112.https://doi.org/10.1086/283547Kjell Johansen, Gunnar Lykkeboe, Sonja Kornerup, G. M. O. Maloiy Temperature insensitive O2 in blood of the tree frogChiromantis petersi, Journal of Comparative Physiology ? B 136, no.11 (Jan 1980): 71–76.https://doi.org/10.1007/BF00688625Elizabeth Sherman Cardiovascular responses of the toad Bufo marinus to thermal stress and water deprivation, Comparative Biochemistry and Physiology Part A: Physiology 66, no.44 (Jan 1980): 643–650.https://doi.org/10.1016/0300-9629(80)90012-2R. G. Boutilier, D. J. Randall, G. Shelton, D. P. Toews Acid-Base Relationships in the Blood of the Toad, Bufo Marinus, Journal of Experimental Biology 82, no.11 (Oct 1979): 345–355.https://doi.org/10.1242/jeb.82.1.345R. G. Boutilier, D. J. Randall, G. Shelton, D. P. Toews Acid-Base Relationships in the Blood of the Toad, Bufo Marinus, Journal of Experimental Biology 82, no.11 (Oct 1979): 357–365.https://doi.org/10.1242/jeb.82.1.357R. G. Boutilier, D. J. Randall, G. Shelton, D. P. Toews Acid-Base Relationships in the Blood of the Toad, Bufo Marinus, Journal of Experimental Biology 82, no.11 (Oct 1979): 331–344.https://doi.org/10.1242/jeb.82.1.331Victor H. Hutchison, Kirk Miller Aerobic and anaerobic contributions to sustained activity in Xenopus laevis, Respiration Physiology 38, no.11 (Sep 1979): 93–103.https://doi.org/10.1016/0034-5687(79)90009-4Cynthia Carey Aerobic and anaerobic energy expenditure during rest and activity in montane Bufo b. boreas and Rana pipiens, Oecologia 39, no.22 (Jan 1979): 213–228.https://doi.org/10.1007/BF00348070Donald C. Jackson, Beth A. Braun Respiratory control in bullfrogs: Cutaneous versus pulmonary response to selective CO2 exposure, Journal of Comparative Physiology ? B 129, no.44 (Jan 1979): 339–342.https://doi.org/10.1007/BF00686991Richard S. Lillo Recovery from diving bradycardia in bullfrogs, Journal of Comparative Physiology ? B 133, no.33 (Jan 1979): 193–198.https://doi.org/10.1007/BF00691465E. Starr Hazard, Victor H. Hutchison Ontogenetic changes in erythrocytic organic phosphates in the bullfrog,Rana catesbeiana, Journal of Experimental Zoology 206, no.11 (Oct 1978): 109–117.https://doi.org/10.1002/jez.1402060110Donald C. Jackson Respiratory control and CO2 conductance: Temperature effects in a turtle and a frog, Respiration Physiology 33, no.11 (Apr 1978): 103–114.https://doi.org/10.1016/0034-5687(78)90089-0A. Hakim, J. S. Datta Munshi, G. M. Hughes Morphometries of the respiratory organs of the Indian green snake‐headed fish, Channa punctata, Journal of Zoology 184, no.44 (Aug 2009): 519–543.https://doi.org/10.1111/j.1469-7998.1978.tb03305.xJane A. Mackenzie, Donald C. Jacson The effect of temperature on cutaneous CO2 loss and conductance in the bullfrog, Respiration Physiology 32, no.33 (Mar 1978): 313–323.https://doi.org/10.1016/0034-5687(78)90119-6Henry J Harlow Seasonal aerobic and anaerobic metabolism at rest and during activity in the salamander Taricha torosa, Comparative Biochemistry and Physiology Part A: Physiology 61, no.22 (Jan 1978): 177–182.https://doi.org/10.1016/0300-9629(78)90092-0Antonio Ari Gonçalves, Paulo Sawaya Oxygen uptake by Typhlonectes compressicaudus related to the body weight, Comparative Biochemistry and Physiology Part A: Physiology 61, no.11 (Jan 1978): 141–143.https://doi.org/10.1016/0300-9629(78)90290-6DONALD C. JACKSON Respiratory Control in Air-Breathing Ectotherms, (Jan 1978): 93–130.https://doi.org/10.1016/B978-0-12-204650-6.50009-5R. Kirsch, G. Nonnotte Cutaneous respiration in three freshwater teleosts, Respiration Physiology 29, no.33 (May 1977): 339–354.https://doi.org/10.1016/0034-5687(77)90008-1Robert H Catlett The effect of ventricular blood O2, CO2 and pH on diving bradycardia in the bullfrog (Rana catesbeiana), Comparative Biochemistry and Physiology Part A: Physiology 56, no.44 (Jan 1977): 589–591.https://doi.org/10.1016/0300-9629(77)90291-2Gordon R. Ultsch Respiratory surface area as a factor controlling the standard rate of O2 consumption of aquatic salamanders, Respiration Physiology 26, no.33 (May 1976): 357–369.https://doi.org/10.1016/0034-5687(76)90006-2James R. Spotila, Evan N. Berman Determination of skin resistance and the role of the skin in controlling water loss in amphibians and reptiles, Comparative Biochemistry and Physiology Part A: Physiology 55, no.44 (Jan 1976): 407–411.https://doi.org/10.1016/0300-9629(76)90069-4Donald C. Jackson, Jonathan Allen, Peter K. Strupp The contribution of non-pulmonary surfaces to CO2 loss in 6 species of turtles at 20°C, Comparative Biochemistry and Physiology Part A: Physiology 55, no.33 (Jan 1976): 243–246.https://doi.org/10.1016/0300-9629(76)90139-0Donald C. Jackson Non-pulmonary CO2 loss during diving in the turtle, Pseudemys script a elegans, Comparative Biochemistry and Physiology Part A: Physiology 55, no.33 (Jan 1976): 237–241.https://doi.org/10.1016/0300-9629(76)90138-9S.C. Wood, R.E. Weber, G.M.O. Maloiy, K. Johansen Oxygen uptake and blood respiratory properties of the caecilian Boulengerula taitanus, Respiration Physiology 24, no.33 (Sep 1975): 355–363.https://doi.org/10.1016/0034-5687(75)90024-9Randall N. Gatz, Eugene C. Crawford, Johannes Piiper Kinetics of inert gas equilibration in an exclusively skin-breathing salamander, Desmognathus fuscus, Respiration Physiology 24, no.11 (Jun 1975): 15–29.https://doi.org/10.1016/0034-5687(75)90118-8Lloyd C. Fitzpatrick, Arthur V. Brown Metabolic compensation to temperature in the salamander Desmognathus ochrophaeus from a high elevation population, Comparative Biochemistry and Physiology Part A: Physiology 50, no.44 (Apr 1975): 733–737.https://doi.org/10.1016/0300-9629(75)90137-1C. Richard Tracy Water and Energy Relations of Terrestrial Amphibians: Insights from Mechanistic Modeling, (Jan 1975): 325–346.https://doi.org/10.1007/978-3-642-87810-7_19Lech Ryszkowski Energy and matter economy of ecosystems, (Jan 1975): 109–126.https://doi.org/10.1007/978-94-010-1954-5_9L.Douglas Turkey, Victor H. Hutchison Metabolic scope, oxygen debt and the diurnal oxygen consumption cycle of the leopard frog, Rana pipiens, Comparative Biochemistry and Physiology Part A: Physiology 49, no.33 (Nov 1974): 583–601.https://doi.org/10.1016/0300-9629(74)90571-4Albert F. Bennett, Paul Licht Anaerobic metabolism during activity in amphibians, Comparative Biochemistry and Physiology Part A: Physiology 48, no.22 (Jun 1974): 319–327.https://doi.org/10.1016/0300-9629(74)90712-9D.G. Smith Insensitivity of toad carbon dioxide exchange to acetazolamide, Comparative Biochemistry and Physiology Part A: Physiology 48, no.22 (Jun 1974): 337–341.https://doi.org/10.1016/0300-9629(74)90714-2M. G. Emílio GAS EXCHANGES AND BLOOD GAS CONCENTRATIONS IN THE FORG RANA RIDIBUNDA, Journal of Experimental Biology 60, no.33 (Jun 1974): 901–908.https://doi.org/10.1242/jeb.60.3.901M. G. Emilio, G. Shelton Gas Exchange and its Effect on Blood Gas Concentrations in the Amphibian, Xenopus Laevis, Journal of Experimental Biology 60, no.22 (Apr 1974): 567–579.https://doi.org/10.1242/jeb.60.2.567R.W. Guimond, V.H. Hutchison Aerial and aquatic respiration in the congo eel Amphiuma means means (GARDEN), Respiration Physiology 20, no.22 (Mar 1974): 147–159.https://doi.org/10.1016/0034-5687(74)90103-0Randall N. Gatz, Eugene C. Crawford, Johannes Piiper Metabolic and heart rate response of the plethodontid salamander Desmognathus fuscus to hypoxia, Respiration Physiology 20, no.11 (Feb 1974): 43–49.https://doi.org/10.1016/0034-5687(74)90017-6Robert W. Guimond, Victor H. Hutchison Aquatic Respiration: An Unusual Strategy in the Hellbender Cryptobranchus alleganiensis alleganiensis (Daudin), Science 182, no.41184118 (Dec 1973): 1263–1265.https://doi.org/10.1126/science.182.4118.1263Robert W. Guimond, Victor H. Hutchison Trimodal gas exchange in the large aquatic salamander, Siren lacertina (Linnaeus), Comparative Biochemistry and Physiology Part A: Physiology 46, no.22 (Oct 1973): 249–268.https://doi.org/10.1016/0300-9629(73)90416-7P.J. Bentley, J.W. Shield Respiration of some urodele and anuran amphibia—II. In air, role of the skin and lungs, Comparative Biochemistry and Physiology Part A: Physiology 46, no.11 (Sep 1973): 29–38.https://doi.org/10.1016/0300-9629(73)90555-0Gordon R. Ultsch A theoretical and experimental investigation of the relationships between metabolic rate, body size, and oxygen exchange capacity, Respiration Physiology 18, no.22 (Jul 1973): 143–160.https://doi.org/10.1016/0034-5687(73)90045-5P. J. BENTLEY, J. W. SHIELD Ventilation of Toad Lungs in the Absence of the Buccopharyngeal Pump, Nature 243, no.54095409 (Jun 1973): 538–539.https://doi.org/10.1038/243538a0David L. Jameson, James P. Mackey, Margaret Anderson WEATHER, CLIMATE, AND THE EXTERNAL MORPHOLOGY OF PACIFIC TREE TOADS, Evolution 27, no.22 (May 2017): 285–302.https://doi.org/10.1111/j.1558-5646.1973.tb00674.xAlbert F. Bennett, Paul Licht Relative contributions of anaerobic and aerobic energy production during activity in amphibia, Journal of Comparative Physiology 87, no.44 (Jan 1973): 351–360.https://doi.org/10.1007/BF00695269Dennis L. Claussen The water relations of the tailed frog, Ascaphus truei, and the pacific treefrog, Hyla regilla, Comparative Biochemistry and Physiology Part A: Physiology 44, no.11 (Jan 1973): 155–171.https://doi.org/10.1016/0300-9629(73)90378-2Robert W Guimond, Victor H Hutchison Pulmonary, branchial and cutaneous gas exchange in the mud puppy, Necturusmaculosus maculosus (Rafinesque), Comparative Biochemistry and Physiology Part A: Physiology 42, no.22 (Jun 1972): 367–392.https://doi.org/10.1016/0300-9629(72)90118-1C. Lenfant, K. Johansen Gas exchange in gill, skin, and lung breathing, Respiration Physiology 14, no.1-21-2 (Mar 1972): 211–218.https://doi.org/10.1016/0034-5687(72)90029-1David R. Jones Anaerobiosis and the oxygen debt in an anuran amphibian,Rana esculenta (L.), Journal of Comparative Physiology 77, no.44 (Jan 1972): 356–382.https://doi.org/10.1007/BF00694941Sonia Espina, Mireya Rojas A comparison of the size of the urinary bladder of two south american anurans of different habitat, Comparative Biochemistry and Physiology Part A: Physiology 41, no.11 (Jan 1972): 115–119.https://doi.org/10.1016/0300-9629(72)90039-4Donald G. Dunlap Acutely measured metabolic rate-temperature curves in the cricket frog, Acris crepitans, Comparative Biochemistry and Physiology Part A: Physiology 38, no.11 (Jan 1971): 1–16.https://doi.org/10.1016/0300-9629(71)90094-6J. L. Cloudsley-Thompson The significance of cutaneous respiration in BUFO REGULARIS Reuss, International Journal of Biometeorology 14, no.44 (Dec 1970): 361–364.https://doi.org/10.1007/BF01462911Carl Gans RESPIRATION IN EARLY TETRAPODS—THE FROG IS A RED HERRING, Evolution 24, no.44 (May 2017): 723–734.https://doi.org/10.1111/j.1558-5646.1970.tb01807.xJ. Farber, H. Rahn Gas exchange between air and water and the ventilation pattern in the electric eel, Respiration Physiology 9, no.22 (May 1970): 151–161.https://doi.org/10.1016/0034-5687(70)90067-8S.M. Tenney, J.B. Tenney Quantitative morphology of cold-blooded lungs: Amphibia and reptilia, Respiration Physiology 9, no.22 (May 1970): 197–215.https://doi.org/10.1016/0034-5687(70)90071-XDavid L. Jameson, William Taylor, John Mountjoy METABOLIC AND MORPHOLOGICAL ADAPTATION TO HETEROGENOUS ENVIRONMENTS BY THE PACIFIC TREE TOAD, HYLA REGULA, Evolution 24, no.11 (May 2017): 75–89.https://doi.org/10.1111/j.1558-5646.1970.tb01741.xDonald G Dunlap Influence of temperature and duration of acclimation, time of day, sex and body weight on metabolic rates in the hylid frog, Acris crepitans, Comparative Biochemistry and Physiology 31, no.44 (Nov 1969): 555–570.https://doi.org/10.1016/0010-406X(69)90057-7Jerrold H. Zar The use of the allometric model for avian standard metabolism-body weight relationships, Comparative Biochemistry and Physiology 29, no.11 (Apr 1969): 227–234.https://doi.org/10.1016/0010-406X(69)91738-1Carl Gans, H. J. de Jongh, J. Farber Bullfrog ( Rana catesbeiana ) Ventilation: How Does the Frog Breathe?, Science 163, no.38723872 (Mar 1969): 1223–1225.https://doi.org/10.1126/science.163.3872.1223H. J. De Jongh, Carl Gans On the mechanism of respiration in the bullfrog,Rana catesbeiana: A reassessment, Journal of Morphology 127, no.33 (Mar 1969): 259–289.https://doi.org/10.1002/jmor.1051270302Lon McClanahan, Roger Baldwin Rate of water uptake through the integument of the desert toad, Bufo punctatus, Comparative Biochemistry and Physiology 28, no.11 (Jan 1969): 381–389.https://doi.org/10.1016/0010-406X(69)91351-6Robert W Guimond, Victor H Hutchison The effect of temperature and photoperiod on gas exchange in the leopard frog, Rana pipiens, Comparative Biochemistry and Physiology 27, no.11 (Oct 1968): 177–195.https://doi.org/10.1016/0010-406X(68)90763-9
Referência(s)