Mouse Model of Transluminal Femoral Artery Injury
2001; Humana Press; Linguagem: Inglês
10.1007/978-1-59259-003-2_9
AutoresErnane D. Reis, Susan S. Smyth, Barry S. Coller,
Tópico(s)Antiplatelet Therapy and Cardiovascular Diseases
ResumoThe growing use of percutaneous coronary interventions to treat vascular disease has reinforced the importance of understanding the molecular mechanisms involved in the arterial-wall response to injury. The difficulties in establishing robust animal models that simulate human disease have limited such studies (1–3). Mouse models are particularly valuable because of the availability of mice with targeted gene disruptions. Such mice allow for the dissection of the molecular contributions to the vascular response and promise to help identify potential therapeutic targets (4, 5). A number of methods to produce external arterial injury in mice have been reported: ligation of the common carotid artery (6), perivascular electrical injury of the carotid/femoral artery (7), and placement of a polyethylene cuff (8). The small size of mouse blood vessels has made it difficult to develop a reproducible model of endovascular injury. The reported endovascular methods rely on air (9) or wire (10) injury of the carotid artery. Since both vascular injury and arterial ligation have been independently demonstrated to induce intimal hyperplasia, we have developed a method that combines both endothelial denudation—induced by transluminal passage of a wire—and distal ligation of the mouse femoral artery. Our model is similar to models in larger animals, since platelet adhesion, recruitment of inflammatory cells, and neointimal formation follow the injury in a predictable manner (11–13). We have found that the technical skills needed to perform the model can be acquired rapidly and that the results are highly reproducible. In this chapter, we present detailed methodology and characterize the response of the femoral arterial wall based on our experience with more than 1,000 procedures.
Referência(s)