Gerstenhaber and Batalin–Vilkovisky Structures on Lagrangian Intersections
2009; Birkhäuser; Linguagem: Inglês
10.1007/978-0-8176-4745-2_1
ISSN2296-505X
AutoresKai Behrend, Barbara Fantechi,
Tópico(s)Homotopy and Cohomology in Algebraic Topology
ResumoLet M and N be Lagrangian submanifolds of a complex symplectic manifold S. We construct a Gerstenhaber algebra structure on $$\mathcal{T}or_\ast^{\mathcal{O}_S}(\mathcal{O}_M,\mathcal{O}_N)$$ and a compatible Batalin–Vilkovisky module structure on $$\mathcal{E}xt^\ast_{\mathcal{O}_S}(\mathcal{O}_M,\mathcal{O}_N)$$ . This gives rise to a de Rham type cohomology theory for Lagrangian intersections.
Referência(s)