Artigo Acesso aberto Revisado por pares

Sensitive Detection and Quantification of the JAK2V617F Allele by Real-Time PCR

2011; Elsevier BV; Volume: 13; Issue: 5 Linguagem: Inglês

10.1016/j.jmoldx.2011.04.002

ISSN

1943-7811

Autores

Cornelis J. J. Huijsmans, Jeroen Poodt, Paul H. M. Savelkoul, Mirjam H. A. Hermans,

Tópico(s)

Eosinophilic Disorders and Syndromes

Resumo

A single G-to-T missense mutation in the gene for the JAK2 tyrosine kinase, leading to a V617F amino acid substitution, is commonly found in several myeloproliferative neoplasms. Reliable quantification of this mutant allele is of increasing clinical and therapeutic interest in predicting and diagnosing this group of neoplasms. Because JAK2V617F is somatically acquired and may be followed by loss of heterozygosity, the percentage of mutant versus wild-type DNA in blood can vary between 0% and almost 100%. Therefore, we developed a real-time PCR assay for detection and quantification of the low-to-high range of the JAK2V617F allele burden. To allow the assay to meet these criteria, amplification of the wild-type JAK2 was blocked with a peptide nucleic acid oligonucleotide. JAK2V617F patient DNA diluted in JAK2 wild-type DNA could be amplified linearly from 0.05% to 100%, with acceptable reproducibility of quantification. The sensitivity of the assay was 0.05% (n = 3 of 3). In 9 of 100 healthy blood donors, a weak positive/background signal was observed in DNA isolated from blood, corresponding to approximately 0.01% JAK2V617F allele. In one healthy individual, we observed this signal in duplicate. The clinical relevance of this finding is not clear. By inhibiting amplification of the wild-type allele, we developed a sensitive and linear real-time PCR assay to detect and quantify JAK2V617F. A single G-to-T missense mutation in the gene for the JAK2 tyrosine kinase, leading to a V617F amino acid substitution, is commonly found in several myeloproliferative neoplasms. Reliable quantification of this mutant allele is of increasing clinical and therapeutic interest in predicting and diagnosing this group of neoplasms. Because JAK2V617F is somatically acquired and may be followed by loss of heterozygosity, the percentage of mutant versus wild-type DNA in blood can vary between 0% and almost 100%. Therefore, we developed a real-time PCR assay for detection and quantification of the low-to-high range of the JAK2V617F allele burden. To allow the assay to meet these criteria, amplification of the wild-type JAK2 was blocked with a peptide nucleic acid oligonucleotide. JAK2V617F patient DNA diluted in JAK2 wild-type DNA could be amplified linearly from 0.05% to 100%, with acceptable reproducibility of quantification. The sensitivity of the assay was 0.05% (n = 3 of 3). In 9 of 100 healthy blood donors, a weak positive/background signal was observed in DNA isolated from blood, corresponding to approximately 0.01% JAK2V617F allele. In one healthy individual, we observed this signal in duplicate. The clinical relevance of this finding is not clear. By inhibiting amplification of the wild-type allele, we developed a sensitive and linear real-time PCR assay to detect and quantify JAK2V617F. In 2005, the involvement of the JAK2V617F somatic point mutation in myeloproliferative neoplasms (MPNs) became clear. JAK2V617F is caused by a G-to-T transversion in the Janus kinase 2 (JAK2) gene resulting in a valine-to-phenylalanine amino acid substitution at codon 617.1Kralovics R. Passamonti F. Buser A.S. Teo S.S. Tiedt R. Passweg J.R. Tichelli A. Cazzola M. Skoda R.C. A gain-of-function mutation of JAK2 in myeloproliferative disorders.N Engl J Med. 2005; 352: 1779-1790Crossref PubMed Scopus (2958) Google Scholar, 2James C. Ugo V. Le Couédic J.P. Staerk J. Delhommeau1 F. Lacout C. Garçon L. Raslova H. Berger R. Bennaceur-Griscelli A. Villeval J. Constantinescu S.N. Casadevall N. Vainchenker W. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera.Nature. 2005; 434: 1144-1148Crossref PubMed Scopus (2908) Google Scholar, 3Levine R.L. Wadleigh M. Cools J. Ebert B.L. Wernig G. Huntly B.J. Boggon T.J. Wlodarska I. Clark J.J. Moore S. Adelsperger J. Koo S. Lee J.C. Gabriel S. Mercher T. D'Andrea A. Fröhling S. Döhner K. Marynen P. Vandenberghe P. Mesa R.A. Tefferi A. Griffin J.D. Eck M.J. Sellers W.R. Meyerson M. Golub T.R. Lee S.J. Gilliland D.G. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis.Cancer Cell. 2005; 7: 387-397Abstract Full Text Full Text PDF PubMed Scopus (2452) Google Scholar, 4Baxter E.J. Scott L.M. Campbell P.J. East C. Fourouclas N. Swanton S. Vassiliou G.S. Bench A.J. Boyd E.M. Curtin N. Scott M.A. Erber W.N. Green A.R. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders.Lancet. 2005; 365: 1054-1061Abstract Full Text Full Text PDF PubMed Scopus (2296) Google Scholar JAK2 is a nonreceptor tyrosine kinase involved in the JAK-STAT signaling pathway.5Schindler C. Darnell Jr, J.E. Transcriptional responses to polypeptide ligands: the JAK-STAT pathway.Annu Rev Biochem. 1995; 64: 621-651Crossref PubMed Scopus (1649) Google Scholar The autoinhibitory pseudokinase JH2 domain is thought to be by the mutation altered in such a way that the JAK-STAT signaling pathway is constitutively activated, resulting in growth factor–independent cell proliferation.6Steensma D.P. JAK2 V617F in myeloid disorders: molecular diagnostic techniques and their clinical utility: a paper from the 2005 William Beaumont Hospital Symposium on Molecular Pathology.J Mol Diagn. 2006; 8: 397-411Abstract Full Text Full Text PDF PubMed Scopus (64) Google Scholar Since the discovery of JAK2V617F, other mutations in JAK2 and other genes, such as Exon 12, MPL, and TET2, have been described. These mutations occur in a relatively small percentage of patients with MPN.7Tefferi A. Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1.Leukemia. 2010; 24: 1128-1138Crossref PubMed Scopus (435) Google Scholar, 8Scott L.M. Tong W. Levine R.L. Scott M.A. Beer P.A. Stratton M.R. Futreal P.A. Erber W.N. McMullin M.F. Harrison C.N. Warren A.J. Gilliland D.G. Lodish H.F. Green A.R. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis.N Engl J Med. 2007; 356: 459-468Crossref PubMed Scopus (1005) Google Scholar, 9Pikman Y. Lee B.H. Mercher T. McDowell E. Ebert B.L. Gozo M. Cuker A. Wernig G. Moore S. Galinsky I. DeAngelo D.J. Clark J.J. Lee S.J. Golub T.R. Wadleigh M. Gilliland D.G. Levine R.L. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia.PLoS Med. 2006; 3: e270Crossref PubMed Scopus (1104) Google Scholar, 10Tefferi A. Pardanani A. Lim K.H. Abdel-Wahab O. Lasho T.L. Patel J. Gangat N. Finke C.M. Schwager S. Mullally A. Li C.Y. Hanson C.A. Mesa R. Bernard O. Delhommeau F. Vainchenker W. Gilliland D.G. Levine R.L. TET2 mutations and their clinical correlates in polycythemia vera, essential thrombocythemia and myelofibrosis.Leukemia. 2009; 23: 905-911Crossref PubMed Scopus (346) Google Scholar JAK2V617F, in contrast, is found in many patients: 65% to 97% of polycythemia vera (PV) cases, 23% to 57% of essential thrombocythemia cases, and 35% to 57% of chronic idiopathic myelofibrosis cases.11Nelson M.E. Steensma D.P. JAK2 V617F in myeloid disorders: what do we know now, and where are we headed?.Leuk Lymphoma. 2006; 47: 177-194Crossref PubMed Scopus (48) Google Scholar, 12Tefferi A. Gilliland D.G. The JAK2V617F tyrosine kinase mutation in myeloproliferative disorders: status report and immediate implications for disease classification and diagnosis.Mayo Clin Proc. 2005; 80: 947-958Abstract Full Text Full Text PDF PubMed Scopus (113) Google Scholar The diagnostic value of JAK2 mutational analysis in MPN is now well established and endorsed in the classification of hematologic malignancies by the World Health Organization.13Vardiman J.W. Thiele J. Arber D.A. Brunning R.D. Borowitz M.J. Porwit A. Harris N.L. Le Beau M.M. Hellström-Lindberg E. Tefferi A. Bloomfield C.D. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes.Blood. 2009; 11: 937-951Crossref Scopus (3464) Google Scholar Patients with PV often carry a JAK2V617F homozygous burden, in contrast to those with essential thrombocythemia, in whom homozygosity is rare.14Scott L.M. Scott M.A. Campbell P.J. Green A.R. Progenitors homozygous for the V617F mutation occur in most patients with polycythemia vera, but not essential thrombocythemia.Blood. 2006; 108: 2435-2437Crossref PubMed Scopus (228) Google Scholar This finding was also recapitulated in a large multicenter study: PV (n = 323: 67.8% heterozygous and 32.2% homozygous) and essential thrombocythemia (n = 639: 40.2% wild-type, 57.6% heterozygous, and 2.2% homozygous).15Vannucchi A.M. Antonioli E. Guglielmelli P. Rambaldi A. Barosi G. Marchioli R. Marfisi R.M. Finazzi G. Guerini V. Fabris F. Randi M.L. De Stefano V. Caberlon S. Tafuri A. Ruggeri M. Specchia G. Liso V. Rossi E. Pogliani E. Gugliotta L. Bosi A. Barbui T. Clinical profile of homozygous JAK2 617V>F mutation in patients with polycythemia vera or essential thrombocythemia.Blood. 2007; 110: 840-846Crossref PubMed Scopus (372) Google Scholar It is, therefore, more common for patients with PV to have a mutant allele burden >50%. Although the clinical value of the JAK2V617F allele burden is not yet fully understood, a correlation between disease phenotype and the proportion of mutant alleles has been postulated.15Vannucchi A.M. Antonioli E. Guglielmelli P. Rambaldi A. Barosi G. Marchioli R. Marfisi R.M. Finazzi G. Guerini V. Fabris F. Randi M.L. De Stefano V. Caberlon S. Tafuri A. Ruggeri M. Specchia G. Liso V. Rossi E. Pogliani E. Gugliotta L. Bosi A. Barbui T. Clinical profile of homozygous JAK2 617V>F mutation in patients with polycythemia vera or essential thrombocythemia.Blood. 2007; 110: 840-846Crossref PubMed Scopus (372) Google Scholar, 16Passamonti F. Rumi E. Clinical relevance of JAK2 (V617F) mutant allele burden.Haematologica. 2009; 94: 7-10Crossref PubMed Scopus (64) Google Scholar Splenomegaly, vascular events and pruritus in PV and splenomegaly, arterial thrombosis, and microvessel disease in essential thrombocythemia have been clinically correlated to mutant allele burdens.17Vannucchi A.M. Antonioli E. Guglielmelli P. Longo G. Pancrazzi A. Ponziani V. Bogani C. Ferrini P.R. Rambaldi A. Guerini V. Bosi A. Barbui T. MPD Research ConsortiumProspective identification of high-risk polycythemia vera patients based on JAK2(V617F) allele burden.Leukemia. 2007; 21: 1952-1959Crossref PubMed Scopus (265) Google Scholar, 18Antonioli E. Guglielmelli P. Poli G. Bogani C. Pancrazzi A. Longo G. Ponziani V. Tozzi L. Pieri L. Santini V. Bosi A. Vannucchi A.M. Myeloproliferative Disorders Research Consortium (MPD-RC)Influence of JAK2V617F allele burden on phenotype in essential thrombocythemia.Haematologica. 2008; 93: 41-48Crossref PubMed Scopus (133) Google Scholar Patients in the lowest quartile of mutant allele burden in idiopathic myelofibrosis had, overall, significantly shortened overall and leukemia-free survival compared with those with higher allele burdens and those negative for JAK2V617F.19Tefferi A. Lasho T.L. Schwager S.M. Strand J.S. Elliott M. Mesa R. Li C.Y. Wadleigh M. Lee S.J. Gilliland D.G. The clinical phenotype of wild-type, heterozygous, and homozygous JAK2V617F in polycythemia vera.Cancer. 2006; 106: 631-635Crossref PubMed Scopus (194) Google Scholar In addition, the amount of mutant allele burden in correlation to therapy may be of increasing interest in future diagnostic and predictive tests.20Tefferi A. Mutational analysis in BCR-ABL-negative classic myeloproliferative neoplasms: impact on prognosis and therapeutic choices.Leuk Lymphoma. 2010; 51: 576-582Crossref PubMed Scopus (11) Google Scholar With the discovery of JAK2V617F, the detection of this mutation became routine procedure in many laboratories. Since 2005, many assays to detect, and sometimes quantify, JAK2V617F have been described, evaluated, and compared.4Baxter E.J. Scott L.M. Campbell P.J. East C. Fourouclas N. Swanton S. Vassiliou G.S. Bench A.J. Boyd E.M. Curtin N. Scott M.A. Erber W.N. Green A.R. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders.Lancet. 2005; 365: 1054-1061Abstract Full Text Full Text PDF PubMed Scopus (2296) Google Scholar, 6Steensma D.P. JAK2 V617F in myeloid disorders: molecular diagnostic techniques and their clinical utility: a paper from the 2005 William Beaumont Hospital Symposium on Molecular Pathology.J Mol Diagn. 2006; 8: 397-411Abstract Full Text Full Text PDF PubMed Scopus (64) Google Scholar, 21Cankovic M. Whiteley L. Hawley R.C. Zarbo R.J. Chitale D. Clinical performance of JAK2 V617F mutation detection assays in a molecular diagnostics laboratory: evaluation of screening and quantitation methods.Am J Clin Pathol. 2009; 132: 713-721Crossref PubMed Scopus (34) Google Scholar, 22Frantz C. Sekora D.M. Henley D.C. Huang C.K. Pan Q. Quigley N.B. Gorman E. Hubbard R.A. Mirza I. Comparative evaluation of three JAK2V617F mutation detection methods.Am J Clin Pathol. 2007; 128: 865-874Crossref PubMed Scopus (21) Google Scholar, 23Kannim S. Thongnoppakhun W. Auewarakul C.U. Two-round allele specific-polymerase chain reaction: a simple and highly sensitive method for JAK2V617F mutation detection.Clin Chim Acta. 2009; 401: 148-151Crossref PubMed Scopus (22) Google Scholar, 24Kremer M. Horn T. Koch I. Dechow T. Gattenloehner S. Pfeiffer W. Quintanilla-Martínez L. Fend F. Quantitation of the JAK2V617F mutation in microdissected bone marrow trephines: equal mutational load in myeloid lineages and rare involvement of lymphoid cells.Am J Surg Pathol. 2008; 32: 928-935Crossref PubMed Scopus (11) Google Scholar, 25Lay M. Mariappan R. Gotlib J. Dietz L. Sebastian S. Schrijver I. Zehnder J.L. Detection of the JAK2 V617F mutation by LightCycler PCR and probe dissociation analysis.J Mol Diagn. 2006; 8: 330-334Abstract Full Text Full Text PDF PubMed Scopus (21) Google Scholar, 26Shammaa D. Bazarbachi A. Halas H. Greige L. Mahfouz R. JAK2 V617F mutation detection: laboratory comparison of two kits using RFLP and qPCR.Genet Test Mol Biomarkers. 2010; 14: 13-15Crossref PubMed Scopus (4) Google Scholar, 27James C. Delhommeau F. Marzac C. Teyssandier I. Couédic J.P. Giraudier S. Roy L. Saulnier P. Lacroix L. Maury S. Tulliez M. Vainchenker W. Ugo V. Casadevall N. Detection of JAK2 V617F as a first intention diagnostic test for erythrocytosis.Leukemia. 2006; 20: 350-353Crossref PubMed Scopus (106) Google Scholar, 28Lippert E. Girodon F. Hammond E. Jelinek J. Reading N.S. Fehse B. Hanlon K. Hermans M. Richard C. Swierczek S. Ugo V. Carillo S. Harrivel V. Marzac C. Pietra D. Sobas M. Mounier M. Migeon M. Ellard S. Kröger N. Herrmann R. Prchal J.T. Skoda R.C. Hermouet S. Concordance of assays designed for the quantification of JAK2V617F: a multicenter study.Haematologica. 2009; 94: 38-45Crossref PubMed Scopus (66) Google Scholar, 29Jelinek J. Oki Y. Gharibyan V. Bueso-Ramos C. Prchal J.T. Verstovsek S. Beran M. Estey E. Kantarjian H.M. Issa J.P. JAK2 mutation 1849G>T is rare in acute leukemias but can be found in CMML, Philadelphia chromosome-negative CML, and megakaryocytic leukemia.Blood. 2005; 106: 3370-3373Crossref PubMed Scopus (321) Google Scholar, 30Chen Q. Lu P. Jones A.V. Cross N.C. Silver R.T. Wang Y.L. Amplification refractory mutation system, a highly sensitive and simple polymerase chain reaction assay, for the detection of JAK2 V617F mutation in chronic myeloproliferative disorders.J Mol Diagn. 2007; 9: 272-276Abstract Full Text Full Text PDF PubMed Scopus (60) Google Scholar, 31Tan A.Y. Westerman D.A. Dobrovic A. A simple, rapid, and sensitive method for the detection of the JAK2 V617F mutation.Am J Clin Pathol. 2007; 127: 977-981Crossref PubMed Scopus (19) Google Scholar, 32Vannucchi A.M. Pancrazzi A. Bogani C. Antonioli E. Guglielmelli P. A quantitative assay for JAK2(V617F) mutation in myeloproliferative disorders by ARMS-PCR and capillary electrophoresis.Leukemia. 2006; 20: 1055-1060Crossref PubMed Scopus (68) Google Scholar, 33Wolstencroft E.C. Hanlon K. Harries L.W. Standen G.R. Sternberg A. Ellard S. Development of a quantitative real-time polymerase chain reaction assay for the detection of the JAK2 V617F mutation.J Mol Diagn. 2007; 9: 42-46Abstract Full Text Full Text PDF PubMed Scopus (19) Google Scholar, 34Bousquet M. Le Guellec S. Quelen C. Rigal-Huguet F. Delsol G. Brousset P. Frequent detection of the JAK2 V617F mutation in bone marrow core biopsy specimens from chronic myeloproliferative disorders using the TaqMan polymerase chain reaction single nucleotide polymorphism genotyping assay: a retrospective study with pathologic correlations.Hum Pathol. 2006; 37: 1458-1464Abstract Full Text Full Text PDF PubMed Scopus (19) Google Scholar, 35Hammond E. Shaw K. Carnley B. P'ng S. James I. Herrmann R. Quantitative determination of JAK2 V617F by TaqMan: an absolute measure of averaged copies per cell that may be associated with the different types of myeloproliferative disorders.J Mol Diagn. 2007; 9: 242-248Abstract Full Text Full Text PDF PubMed Scopus (23) Google Scholar, 36Kröger N. Badbaran A. Holler E. Hahn J. Kobbe G. Bornhäuser M. Reiter A. Zabelina T. Zander A.R. Fehse B. Monitoring of the JAK2-V617F mutation by highly sensitive quantitative real-time PCR after allogeneic stem cell transplantation in patients with myelofibrosis.Blood. 2007; 109: 1316-1321Crossref PubMed Scopus (133) Google Scholar, 37Merker J.D. Jones C.D. Oh S.T. Schrijver I. Gotlib J. Zehnder J.L. Design and evaluation of a real-time PCR assay for quantification of JAK2 V617F and wild-type JAK2 transcript levels in the clinical laboratory.J Mol Diagn. 2010; 12: 58-64Abstract Full Text Full Text PDF PubMed Scopus (18) Google Scholar, 38Rapado I. Albizua E. Ayala R. Hernández J.A. Garcia-Alonso L. Grande S. Gallardo M. Gilsanz F. Martinez-Lopez J. Validity test study of JAK2 V617F and allele burden quantification in the diagnosis of myeloproliferative diseases.Ann Hematol. 2008; 87: 741-749Crossref PubMed Scopus (32) Google Scholar, 39Sidon P. Heimann P. Lambert F. Dessars B. Robin V. El Housni H. Combined locked nucleic acid and molecular beacon technologies for sensitive detection of the JAK2V617F somatic single-base sequence variant.Clin Chem. 2006; 52: 1436-1438Crossref PubMed Scopus (24) Google Scholar, 40Sidon P. El Housni H. Dessars B. Heimann P. The JAK2V617F mutation is detectable at very low level in peripheral blood of healthy donors.Leukemia. 2006; 20: 1622Crossref PubMed Scopus (101) Google Scholar, 41Poodt J. Fijnheer R. Walsh I.B. Hermans M.H. A sensitive and reliable semi-quantitative real-time PCR assay to detect JAK2 V617F in blood.Hematol Oncol. 2006; 24: 227-233Crossref PubMed Scopus (32) Google Scholar, 42Er T.K. Lin S.F. Chang J.G. Hsieh L.L. Lin S.K. Wang L.H. Lin C.W. Chang C.S. Liu T.C. Detection of the JAK2 V617F missense mutation by high resolution melting analysis and its validation.Clin Chim Acta. 2009; 408: 39-44Crossref PubMed Scopus (28) Google Scholar, 43Olsen R.J. Tang Z. Farkas D.H. Bernard D.W. Zu Y. Chang C.C. Detection of the JAK2(V617F) mutation in myeloproliferative disorders by melting curve analysis using the LightCycler system.Arch Pathol Lab Med. 2006; 130: 997-1003PubMed Google Scholar, 44Sutton B.C. Allen R.A. Zhao Z.J. Dunn S.T. Detection of the JAK2V617F mutation by asymmetric PCR and melt curve analysis.Cancer Biomark. 2007; 3: 315-324PubMed Google Scholar, 45Tanaka R. Kuroda J. Stevenson W. Ashihara E. Ishikawa T. Taki T. Kobayashi Y. Kamitsuji Y. Kawata E. Takeuchi M. Murotani Y. Yokota A. Hirai M. Majima S. Taniwaki M. Maekawa T. Kimura S. Fully automated and super-rapid system for the detection of JAK2V617F mutation.Leuk Res. 2008; 32: 1462-1467Abstract Full Text Full Text PDF PubMed Scopus (27) Google Scholar, 46Nussenzveig R.H. Swierczek S.I. Jelinek J. Gaikwad A. Liu E. Verstovsek S. Prchal J.F. Prchal J.T. Polycythemia vera is not initiated by JAK2V617F mutation.Exp Hematol. 2007; 35: 32-38Abstract Full Text Full Text PDF PubMed Scopus (171) Google Scholar, 47Passamonti F. Rumi E. Pietra D. Della Porta M.G. Boveri E. Pascutto C. Vanelli L. Arcaini L. Burcheri S. Malcovati L. Lazzarino M. Cazzola M. Relation between JAK2 (V617F) mutation status, granulocyte activation, and constitutive mobilization of CD34+ cells into peripheral blood in myeloproliferative disorders.Blood. 2006; 107: 3676-3682Crossref PubMed Scopus (210) Google Scholar, 48Sattler M. Walz C. Crowley B.J. Lengfelder E. Jänne P.A. Rogers A.M. Kuang Y. Distel R.J. Reiter A. Griffin J.D. A sensitive high-throughput method to detect activating mutations of Jak2 in peripheral-blood samples.Blood. 2006; 107: 1237-1238Crossref PubMed Scopus (16) Google Scholar, 49Fu J.F. Shi J.Y. Zhao W.L. Li G. Pan Q. Li J.M. Hu J. Shen Z.X. Jin J. Chen F.Y. Chen S.J. MassARRAY assay: a more accurate method for JAK2V617F mutation detection in Chinese patients with myeloproliferative disorders.Leukemia. 2008; 22: 660-663Crossref PubMed Scopus (11) Google Scholar, 50Koren-Michowitz M. Shimoni A. Vivante A. Trakhtenbrot L. Rechavi G. Amariglio N. Loewenthal R. Nagler A. Cohen Y. A new MALDI-TOF-based assay for monitoring JAK2 V617F mutation level in patients undergoing allogeneic stem cell transplantation (allo SCT) for classic myeloproliferative disorders (MPD).Leuk Res. 2008; 32: 421-427Abstract Full Text Full Text PDF PubMed Scopus (29) Google Scholar, 51Ohyashiki K. Hori K. Makino T. Ohyashiki J.H. Automated JAK2V617F quantification using a magnetic filtration system and sequence-specific primer-single molecule fluorescence detection.Cancer Genet Cytogenet. 2007; 179: 19-24Abstract Full Text Full Text PDF PubMed Scopus (10) Google Scholar Today, numerous techniques are used: PCR–restriction fragment length polymorphism (RFLP), direct sequencing, pyrosequencing, allele-specific PCR/amplification refractory mutation system, allelic discrimination, real-time PCR, high-resolution melting curve analysis, PCR, denaturing high-pressure liquid chromatography, PCR–matrix-assisted laser desorption/ionization–time of flight (PCR-MALDI-TOF) mass spectrometry, and sequence-specific primer–single molecule fluorescence detection. The techniques differ in a variety of characteristics, such as sensitivity (ranging from 0.01% to 20%, mutant allele diluted in wild-type allele), the potential for high-throughput diagnostics, and equipment required. An overview of currently available assays is presented in Table 1.Table 1Overview and Some Characteristics of Currently Available JAK2V617F Detection (and Quantification) TechniquesTechniqueSensitivity (%)AdvantagesDisadvantagesReferencesPCR-RFLP1–20No special equipment required, inexpensiveRisk of false positives due to incomplete digestion, labor intensive, post-PCR processing required4Baxter E.J. Scott L.M. Campbell P.J. East C. Fourouclas N. Swanton S. Vassiliou G.S. Bench A.J. Boyd E.M. Curtin N. Scott M.A. Erber W.N. Green A.R. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders.Lancet. 2005; 365: 1054-1061Abstract Full Text Full Text PDF PubMed Scopus (2296) Google Scholar, 6Steensma D.P. JAK2 V617F in myeloid disorders: molecular diagnostic techniques and their clinical utility: a paper from the 2005 William Beaumont Hospital Symposium on Molecular Pathology.J Mol Diagn. 2006; 8: 397-411Abstract Full Text Full Text PDF PubMed Scopus (64) Google Scholar, 21Cankovic M. Whiteley L. Hawley R.C. Zarbo R.J. Chitale D. Clinical performance of JAK2 V617F mutation detection assays in a molecular diagnostics laboratory: evaluation of screening and quantitation methods.Am J Clin Pathol. 2009; 132: 713-721Crossref PubMed Scopus (34) Google Scholar, 22Frantz C. Sekora D.M. Henley D.C. Huang C.K. Pan Q. Quigley N.B. Gorman E. Hubbard R.A. Mirza I. Comparative evaluation of three JAK2V617F mutation detection methods.Am J Clin Pathol. 2007; 128: 865-874Crossref PubMed Scopus (21) Google Scholar, 23Kannim S. Thongnoppakhun W. Auewarakul C.U. Two-round allele specific-polymerase chain reaction: a simple and highly sensitive method for JAK2V617F mutation detection.Clin Chim Acta. 2009; 401: 148-151Crossref PubMed Scopus (22) Google Scholar, 24Kremer M. Horn T. Koch I. Dechow T. Gattenloehner S. Pfeiffer W. Quintanilla-Martínez L. Fend F. Quantitation of the JAK2V617F mutation in microdissected bone marrow trephines: equal mutational load in myeloid lineages and rare involvement of lymphoid cells.Am J Surg Pathol. 2008; 32: 928-935Crossref PubMed Scopus (11) Google Scholar, 25Lay M. Mariappan R. Gotlib J. Dietz L. Sebastian S. Schrijver I. Zehnder J.L. Detection of the JAK2 V617F mutation by LightCycler PCR and probe dissociation analysis.J Mol Diagn. 2006; 8: 330-334Abstract Full Text Full Text PDF PubMed Scopus (21) Google Scholar, 26Shammaa D. Bazarbachi A. Halas H. Greige L. Mahfouz R. JAK2 V617F mutation detection: laboratory comparison of two kits using RFLP and qPCR.Genet Test Mol Biomarkers. 2010; 14: 13-15Crossref PubMed Scopus (4) Google ScholarDirect sequencing5–20Simultaneous detection of other mutationsLabor intensive, sequencing equipment required, post-PCR processing required4Baxter E.J. Scott L.M. Campbell P.J. East C. Fourouclas N. Swanton S. Vassiliou G.S. Bench A.J. Boyd E.M. Curtin N. Scott M.A. Erber W.N. Green A.R. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders.Lancet. 2005; 365: 1054-1061Abstract Full Text Full Text PDF PubMed Scopus (2296) Google Scholar, 6Steensma D.P. JAK2 V617F in myeloid disorders: molecular diagnostic techniques and their clinical utility: a paper from the 2005 William Beaumont Hospital Symposium on Molecular Pathology.J Mol Diagn. 2006; 8: 397-411Abstract Full Text Full Text PDF PubMed Scopus (64) Google Scholar, 22Frantz C. Sekora D.M. Henley D.C. Huang C.K. Pan Q. Quigley N.B. Gorman E. Hubbard R.A. Mirza I. Comparative evaluation of three JAK2V617F mutation detection methods.Am J Clin Pathol. 2007; 128: 865-874Crossref PubMed Scopus (21) Google Scholar, 23Kannim S. Thongnoppakhun W. Auewarakul C.U. Two-round allele specific-polymerase chain reaction: a simple and highly sensitive method for JAK2V617F mutation detection.Clin Chim Acta. 2009; 401: 148-151Crossref PubMed Scopus (22) Google Scholar, 25Lay M. Mariappan R. Gotlib J. Dietz L. Sebastian S. Schrijver I. Zehnder J.L. Detection of the JAK2 V617F mutation by LightCycler PCR and probe dissociation analysis.J Mol Diagn. 2006; 8: 330-334Abstract Full Text Full Text PDF PubMed Scopus (21) Google Scholar, 27James C. Delhommeau F. Marzac C. Teyssandier I. Couédic J.P. Giraudier S. Roy L. Saulnier P. Lacroix L. Maury S. Tulliez M. Vainchenker W. Ugo V. Casadevall N. Detection of JAK2 V617F as a first intention diagnostic test for erythrocytosis.Leukemia. 2006; 20: 350-353Crossref PubMed Scopus (106) Google Scholar, 28Lippert E. Girodon F. Hammond E. Jelinek J. Reading N.S. Fehse B. Hanlon K. Hermans M. Richard C. Swierczek S. Ugo V. Carillo S. Harrivel V. Marzac C. Pietra D. Sobas M. Mounier M. Migeon M. Ellard S. Kröger N. Herrmann R. Prchal J.T. Skoda R.C. Hermouet S. Concordance of assays designed for the quantification of JAK2V617F: a multicenter study.Haematologica. 2009; 94: 38-45Crossref PubMed Scopus (66) Google ScholarPyrosequencing2–10Simultaneous (real-time) detection of other mutationsPyrosequencing equipment required, expensive6Steensma D.P. JAK2 V617F in myeloid disorders: molecular diagnostic techniques and their clinical utility: a paper from the 2005 William Beaumont Hospital Symposium on Molecular Pathology.J Mol Diagn. 2006; 8: 397-411Abstract Full Text Full Text PDF PubMed Scopus (64) Google Scholar, 28Lippert E. Girodon F. Hammond E. Jelinek J. Reading N.S. Fehse B. Hanlon K. Hermans M. Richard C. Swierczek S. Ugo V. Carillo S. Harrivel V. Marzac C. Pietra D. Sobas M. Mounier M. Migeon M. Ellard S. Kröger N. Herrmann R. Prchal J.T. Skoda R.C. Hermouet S. Concordance of assays designed for the quantification of JAK2V617F: a multicenter study.Haematologica. 2009; 94: 38-45Crossref PubMed Scopus (66) Google Scholar, 29Jelinek J. Oki Y. Gharibyan V. Bueso-Ramos C. Prchal J.T. Verstovsek S. Beran M. Estey E. Kantarjian H.M. Issa J.P. JAK2 mutation 1849G>T is rare in acute leukemias but can be found in CMML, Philadelphia chromosome-negative CML, and megakaryocytic leukemia.Blood. 2005; 106: 3370-3373Crossref PubMed Scopus (321) Google ScholarAS-PCR/ARMS0.01–5Highly sensitivePost-PCR processing or real-time cycler required6Steensma D.P. JAK2 V617F in myeloid disorders: molecular diagnostic techniques and their clinical utility: a paper from the 2005 William Beaumont Hospital Symposium on Molecular Pathology.J Mol Diagn. 2006; 8: 397-411Abstract Full Text Full Text PDF PubMed Scopus (64) Google Scholar, 21Cankovic M. Whiteley L. Hawley R.C. Zarbo R.J. Chitale D. Clinical performance of JAK2 V617F mutation detection assays in a molecular diagnostics laboratory: evaluation of screening and quantitation methods.Am J Clin Pathol. 2009; 132: 713-721Crossref PubMed Scopus (34) Google Scholar, 22Frantz C. Sekora D.M. Henley D.C. Huang C.K. Pan Q. Quigley N.B. Gorman E. Hubbard R.A. Mirza I. Comparative evaluation of three JAK2V617F mutation detection methods.Am J Clin Pathol. 2007; 128: 865-874Crossref PubMed Scopus (21) Google Scholar, 23Kannim S. Thongnoppakhun W. Auewarakul C.U. Two-round allele specific-polymerase chain reaction: a simple and highly sensitive method for JAK2V617F mutation detection.Clin Chim Acta. 2009; 401: 148-151Crossref PubMed Scopus (22) Google Scholar, 24Kremer M. Horn T. Koch I. Dechow T. Gattenloehner S. Pfeiffer W. Quintanilla-Martínez L. Fend F. Quantitation of the JAK2V617F mutation in microdissected bone marrow trephines: equal mutational load in myeloid lineages and rare involvement of lymphoid cells.Am J Surg Pathol. 2008; 32: 928-935Crossref PubMed Scopus (11) Google Sc

Referência(s)