Outro Revisado por pares

Dynamic Equation of State and Strength of Boron Carbide

2010; Wiley; Linguagem: Inglês

10.1002/9780470944004.ch12

ISSN

1940-6339

Autores

D. E. Grady,

Tópico(s)

Boron and Carbon Nanomaterials Research

Resumo

Dynamic Equation of State and Strength of Boron Carbide Dennis E. Grady, Dennis E. GradySearch for more papers by this author Dennis E. Grady, Dennis E. GradySearch for more papers by this author Book Editor(s):Jeffrey J. Swab, Jeffrey J. SwabSearch for more papers by this authorSanjay Mathur, Sanjay MathurSearch for more papers by this authorTatsuki Ohji, Tatsuki OhjiSearch for more papers by this author First published: 27 September 2010 https://doi.org/10.1002/9780470944004.ch12Citations: 7Book Series:Ceramic Engineering and Science Proceedings AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary This chapter contains sections titled: Introduction Hugoniot Equation of State of McQueen Ultrasonic Equation of State of Boron Carbide Structured Shock-Wave Measurements on Boron Carbide High-Pressure Amorphization of B4C Further Shock Hugoniot Data for Boron Carbide Discusssion of Disparities among Hugoniot EOS Data for B4C Closure REFERENCES D. Emin, Structure and Single Phase Regime of Boron Carbide, Phys. Rev. B, 38, 6041 (1988). 10.1103/PhysRevB.38.6041 CASWeb of Science®Google Scholar T. L. Aselage, D. R. Tallant, J. H., Gieske, S. B. VanDeusen, R. G. Tissot, Preparation and properties of icosahedral borides, in The Physics and Chemistry of Carbides, Nitrides, and Borides, R. Freer, ed., NATO ASI Series E, Vol. 185, pp. 97–111, Kluwer Academic Publishers, Dordrecht (1990). 10.1007/978-94-009-2101-6_7 Web of Science®Google Scholar D. P. Dandekar, Shock Response of Boron Carbide, Army Research Laboratory Report ARL-TR-2456, April (2001). Google Scholar T. J. Vogler, W. D. Reinhart, L. C. Chhabildas, Dynamic Behavior of Boron Carbide, J. Appl. Phys., 95, 8, 4173 (2004). 10.1063/1.1686902 CASWeb of Science®Google Scholar Y. Zhang, T. Mashimo, Y. Uemura, M. Uchino, M. Kodama, K. Shibata, K. Fukuoka, M. Kikuchi, T. Kobayashi, T. Sekine, Shock Compression Behaviors of Boron Carbide, J. Appl. Phys. 100, 113536 (2006). 10.1063/1.2399334 CASWeb of Science®Google Scholar T. J. Holmquist and G. R. Johnson, Characterization and Evaluation of Boron Carbide from One-Dimension Plate Impact, J. Appl. Phys., 100, 093525 (2006). 10.1063/1.2362979 CASWeb of Science®Google Scholar J. A. Ciezak and D. P. Dandekar, Compression and Associated Properties of Boron Carbide, in Shock Compression of Condensed Matter, M. L. Elert et al., eds, AIP Press, 1287–1290 (2009). Web of Science®Google Scholar D. E. Grady, Shock Wave Strength Properties of Boron Carbide and Silicon Carbide, International Conference on Mechanical and Physical Behavior of Materials under Dynamic Loading. les Editions de Physique, pp. 385–391 (1994). Google Scholar R. G. McQueen, S. P. Marsh, J. W. Taylor, J. N. Fritz, W. J. Carter, The Equation of State of Solids from Shock Wave Studies, In High Velocity Impact Phenomena, R Kinslow ed., Academic Press (1970). 10.1016/B978-0-12-408950-1.50012-4 Google Scholar S. P. Marsh, LASL Shock Hugoniot Data, Edited by SP Marsh, University of California Press, Berkeley (1980). Google Scholar D. E. Grady and C. Doolittle, Preliminary Compressibility Analysis of Boron Carbide from High-Pressure Shock and Ultrasonic Data, Applied Research Associates Rept., for U.S. Army TACOM-TARDEC, February (2001). Google Scholar D. E. Grady, Analysis of Shock and High-Rate-Date for Ceramics: Application to Boron Carbide and Silicon Carbide, Applied Research Associates Rept., for U.S. Army TACOM-TARDEC, August (2002). Google Scholar M. W. Chen, J. W. McCauley, K. J. Hemker, Shock Induced Localized Amorphization in Boron Carbide, Science, 299, 1563 (2003). 10.1126/science.1080819 CASPubMedWeb of Science®Google Scholar X. Q. Yan, Z. Tang, L. Zhang, J. J. Guo, C. Q. Jin, Y. Zhang, T. Goto, J.W. McCauley, M. W. Chen, Depressurization Amorphization of Single-Crystal Boron Carbide, Phys. Rev. Letts., 102, 075505 (2009). 10.1103/PhysRevLett.102.075505 CASPubMedWeb of Science®Google Scholar M. L. Wilkins, Third Progress Report of Light Armor Program, Lawrence Radiation Laboratory, Livermore, CA, Report No. UCRL-50460 (1968). Google Scholar W. H. Gust and E. B. Royce, Dynamic Yield Strength of B4C, BeO and Al2O3 Ceramics, J. Appl. Phys., 42, 276 (1971). 10.1063/1.1659584 CASWeb of Science®Google Scholar M. N. Pavlovskii, Shock Compressibility of Six Very Hard Substances, Sov. Phys. Solid State 12, 1737 (1970). Google Scholar T. J. Holmquist and T. J. Vogler, The Response of Silicon Carbide and Boron Carbide Subjected to Shock-Release-Reshock Plate-Impact Experiments, DYMAT 2009, 119–125, EDP Sciences, DOI: 10.1051/Dymat/2009016 (2009). Google Scholar T. J. Holmquist and G. R. Johnson, Response of Silicon Carbide to High Velocity Impact, J. Appl. Phys., 91, 5858–5866 (2002). 10.1063/1.1468903 CASWeb of Science®Google Scholar N. S. Brar, Z. Rosenberg, S. J. Bless, Applying Steinberg's Model to the Hugoniot Elastic Limit of Porous Boron Carbide, Shock Waves in Condensed Matter - 1991, Elsevier Science, pp. 451–454 (1992). 10.1016/B978-0-444-89732-9.50106-0 Google Scholar M. H. Manghnani, Y. Wang, F. Zinin, W. Rafaniello, Elastic and Vibration Properties of B4C to 21 GPa., Science and Technology of High Pressure Volume 2, Proc. Int. Conf. on High Pressure Science and Technology (AIRAPT-17), July 25–30, University Press, 945–948 (2000). Google Scholar S. P. Dodd, G. A. Saunders, B. James, Temperature and Pressure Dependences of the Elastic Properties of Boron Carbide, J. Mater. Sci., 37, 2731–2736 (2002). 10.1023/A:1015825318086 CASWeb of Science®Google Scholar F. Birch, Finite Strain Isotherm and Velocities in Single-Crystal and Polycrystalline NaCl at High Pressures and 300 K, J. Geophys. Res. 83, 1257–1266 (1978). 10.1029/JB083iB03p01257 CASWeb of Science®Google Scholar R. Jeanloz, Shock Wave Equation of State and Finite Strain Theory, J. Geophys. Res., 81, 5873 (1989). 10.1029/JB094iB05p05873 Web of Science®Google Scholar L. M. Barker and R. E. Hollenbach RE, A Laser Interferometer for Measuring High Velocities of any Reflecting Surface, J. Appl. Phys., 43, 4669–4675 (1972). 10.1063/1.1660986 Web of Science®Google Scholar X. Q. Yan, W. J. Li, T. Goto, M. W. Chen, Raman Spectroscopy of Pressure-Induced Amorphous Boron Carbide, Appl. Phys. Letts., 88, 131905 (2006). 10.1063/1.2189826 CASWeb of Science®Google Scholar T. J. Vogler, W. D. Reinhart, L. C. Chhabildas, D. P. Dandekar, Hugoniot and Strength Behavior of Silicon Carbide, J. Appl. Phys., 99, 023512 (2006). 10.1063/1.2159084 CASWeb of Science®Google Scholar R. Palicka, private communication (2010). Google Scholar J. H. Geiske, T. L. Aselage, D. Emin, Elastic Properties of Boron Carbide, in Boron Rich Solilds, D. Emin et al., eds., AIP Conf. Proc. NO. 231, AIP New York, p. 376. Google Scholar Citing Literature Advances in Ceramics Armor VI: Ceramic Engineering and Science Proceedings, Volume 31 ReferencesRelatedInformation

Referência(s)