Outro Revisado por pares

Photochemistry in Surfactant Solutions

1988; Linguagem: Inglês

10.1002/9780470133446.ch5

ISSN

1934-4570

Autores

Günther von Bünau, Thomas Wolff,

Tópico(s)

Photochemistry and Electron Transfer Studies

Resumo

Photochemistry in Surfactant Solutions Günther von Bünau, Günther von Bünau Institut für Physikalische Chemie der Universität Siegen, Siegen, West GermanySearch for more papers by this authorThomas Wolff, Thomas Wolff Institut für Physikalische Chemie der Universität Siegen, Siegen, West GermanySearch for more papers by this author Günther von Bünau, Günther von Bünau Institut für Physikalische Chemie der Universität Siegen, Siegen, West GermanySearch for more papers by this authorThomas Wolff, Thomas Wolff Institut für Physikalische Chemie der Universität Siegen, Siegen, West GermanySearch for more papers by this author Book Editor(s):David H. Volman, David H. Volman Department of Chemistry, University of California, Davis, CaliforniaSearch for more papers by this authorGeorge S. Hammond, George S. Hammond Allied-Single Inc., Morristown, New JerseySearch for more papers by this authorKlaus Gollnick, Klaus Gollnick Institut für Organische Chemie, Universität München, München, West GermanySearch for more papers by this author First published: 01 January 1988 https://doi.org/10.1002/9780470133446.ch5Citations: 17Book Series:Advances in Photochemistry AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary This chapter contains sections titled: Introduction Structure of surfactant solutions Distribution of solutes in microheterogeneous systems Elementary photochemical processes in micellar systems Photochemical effects Spectroscopic probes Conclusions References T. Förster and B. Selinger, Z. Naturforschg. 19a, 38 (1964). Google Scholar M. Hauser and U. Klein, Z. Phys. Chem. 78, 32 (1972). 10.1524/zpch.1972.78.1_2.032 CASWeb of Science®Google Scholar R. C. Dorrance and T. F. Hunter, J. Chem. Soc. Faraday Trans. I 68, 1312 (1972). 10.1039/f19726801312 CASWeb of Science®Google Scholar R. R. Hautala and N. J. Turro, Mol. Photochem. 4, 545 (1972). Google Scholar M. Grätzel and J. K. Thomas, J. Am. Chem. Soc. 95, 6885 (1973). 10.1021/ja00802a002 CASWeb of Science®Google Scholar M. Grätzel, A. Henglein, and E. Janata, Ber. Bunsenges. Phys. Chem. 79, 475, 541 (1975). 10.1002/bbpc.19750790516 Web of Science®Google Scholar W. Schnecke, M. Grätzel, and A. Henglein, Ber. Bunsenges. Phys. Chem. 81, 821 (1977). 10.1002/bbpc.19770810908 CASWeb of Science®Google Scholar N. Roessler and G. von Bünau, J. Photochem. 9, 307 (1978). 10.1016/0047-2670(78)80154-3 Web of Science®Google Scholar M. A. J. Rodgers and M. F. Da Silva e Wheeler, Chem. Phys. Lett. 53, 165 (1978). 10.1016/0009-2614(78)80415-1 CASWeb of Science®Google Scholar B. K. Selinger and A. R. Watkins, Chem. Phys. Left. 56, 99 (1978). 10.1016/0009-2614(78)80196-1 CASWeb of Science®Google Scholar Y. Waka, K. Hamamoto, and N. Mataga, Chem. Phys. Lett. 53, 242 (1978). 10.1016/0009-2614(78)85388-3 CASWeb of Science®Google Scholar K. Zachariasse, Chem. Phys. Lett. 57, 429 (1978). 10.1016/0009-2614(78)85541-9 CASWeb of Science®Google Scholar S. S. Atik, M. Nam, andL. A. Singer, Chem. Phys. Lett. 67, 75 (1979). 10.1016/0009-2614(79)87109-2 CASWeb of Science®Google Scholar D. J. Miller, Ber. Bunsenges. Phys. Chem. 85, 337 (1981). 10.1002/bbpc.19810850417 CASWeb of Science®Google Scholar C. N. Henderson, B. K. Selinger, and A. R. Watkins, J. Photochem. 16, 215 (1981). 10.1016/0047-2670(81)80031-7 CASWeb of Science®Google Scholar B. K. Selinger and A. R. Watkins, J. Photochem. 17, 319 (1982). 10.1016/0047-2670(82)87037-8 Web of Science®Google Scholar N. J. Turro, M. Gratzel, and A. M. Braun, Angew. Chem. 92, 712 (1980). 10.1002/ange.19800920908 CASGoogle Scholar N. J. Turro, G. S. Cox, and M. A. Paczkowski, Top. Curr. Chem. 129, 57 (1985). 10.1007/3-540-15141-9_2 CASWeb of Science®Google Scholar L. A. Singer, in Solution Behavior of Surfactants: Theoretical and Applied Aspects, K. L. Mittal and E. J. Fendler, eds., Plenum Press, New York, 1982, pp. 73–112. 10.1007/978-1-4613-3491-0_4 Google Scholar M. Grätzel, Acc. Chem. Res. 14, 376 (1981). 10.1021/ar00072a003 CASWeb of Science®Google Scholar M. Grätzel, Biochem. Biophys. Acta 683, 221 (1982). 10.1016/0304-4173(82)90002-7 Web of Science®Google Scholar N. J. Turro, Pure Appl. Chem. 58, 1219 (1986). 10.1351/pac198658091219 CASWeb of Science®Google Scholar Kirk-Othmer, Encyclopedia of Chemical Technology, 2nd ed., Vol. 19, Wiley, New York 1969, p. 507. Google Scholar C. Tanford, The Hydrophobic Effect, 2nd ed., Wiley-Interscience, New York, 1980, p. 63. Google Scholar B. Lindman and H. Wennerström, Top. Curr. Chem., 87, 1 (1980). 10.1007/BFb0048488 CASPubMedGoogle Scholar J. Malsch and G. S. Hartley, Z. Phys. Chem. A170, 321 (1934). CASGoogle Scholar N. Ramnath, V. Ramesch, and V. Ramamurthy, J. Sci. Ind. Res. 44, 199 (1985). CASWeb of Science®Google Scholar P. Fromherz, Chem. Phys. Lett. 77, 460 (1981). 10.1016/0009-2614(81)85185-8 CASWeb of Science®Google Scholar K. A. Dill and P. J. Flory, Proc. Natl. Acad. Sci. U.S.A. 78, 676 (1981). 10.1073/pnas.78.2.676 CASPubMedWeb of Science®Google Scholar D. W. R. Gruen, J. Phys. Chem. 89,. 146, 153 (1985). 10.1021/j100247a033 CASWeb of Science®Google Scholar P. Fromherz, C. Röcker, and D. Rüppel, Faraday Disc. Chem. Soc. 81, 39 (1986). 10.1039/DC9868100039 CASWeb of Science®Google Scholar E. M. Wooley and T. E. Burchfield, J. Phys. Chem. 89, 714 (1985). 10.1021/j100250a031 Web of Science®Google Scholar A. I. Rusanov, J. Coll. Interface Sci. 85, 157 (1982). 10.1016/0021-9797(82)90244-2 CASWeb of Science®Google Scholar C. Tanford, Proc. Nat. Acad. Sci. U.S.A. 71, 1811 (1974); 10.1073/pnas.71.5.1811 CASPubMedWeb of Science®Google Scholar J. Phys. Chem. 78, 2469 (1974). 10.1021/j100617a012 CASWeb of Science®Google Scholar P. Mukerjee, J. Phys. Chem. 76, 565 (1972). 10.1021/j100648a019 CASWeb of Science®Google Scholar H. W. Offen, D. R. Dawson, and D. F. Nicoli, J. Coll. Interface Sci. 80, 118 (1981). 10.1016/0021-9797(81)90166-1 CASWeb of Science®Google Scholar E. A. G. Aniansson and S. Wall, J. Phys. Chem. 78, 1024 (1974); 10.1021/j100603a016 CASWeb of Science®Google Scholar J. Phys. Chem. 79, 857 (1975). 10.1021/j100575a019 CASWeb of Science®Google Scholar E. A. G. Aniansson, S. N. Wall, M. Almgren, H. Hoffmann, I. Kielmann, W. Ulbricht, R. Zana, J. Lang, and C. Tondre, J. Phys. Chem. 80, 905 (1976). 10.1021/j100550a001 CASWeb of Science®Google Scholar N. Roessler and T. Wolff, Photochem. Photobiol. 31, 547 (1980). 10.1111/j.1751-1097.1980.tb03744.x CASWeb of Science®Google Scholar P. Infelta and M. Grëtzel, J. Chem. Phys. 70, 179 (1979). 10.1063/1.437218 CASWeb of Science®Google Scholar M. Almgren, Photochem. Photobiol. 15, 297 (1972). 10.1111/j.1751-1097.1972.tb07334.x CASWeb of Science®Google Scholar R. C. Dorrance and T. F. Hunter, J. Chem. Soc. Faraday Trans. I 70, 1572 (1974). 10.1039/f19747001572 CASWeb of Science®Google Scholar M. Almgren, F. Grieser, and J. K. Thomas, J. Am. Chem. Soc. 101, 279 (1979). 10.1021/ja00496a001 CASWeb of Science®Google Scholar D. J. Miller, J. Chem. Educ. 55, 776 (1978). 10.1021/ed055p776 CASWeb of Science®Google Scholar D. J. Miller, U. K. A. Klein, and M. Hauser, Ber. Bunsenges. Phys. Chem. 84, 1135 (1980). 10.1002/bbpc.19800841112 CASWeb of Science®Google Scholar G. Rothenberger, P. P. Infelta, and M. Grëtzel, J. Phys. Chem. 83, 1871 (1979). 10.1021/j100477a016 CASWeb of Science®Google Scholar M. Almgren and J. E. Löfroth, J. Chem. Phys. 76, 2734 (1982). 10.1063/1.443259 CASWeb of Science®Google Scholar T. Förster, Z. Naturforsch. 4a, 321 (1949); 10.1515/zna-1949-0501 CASGoogle Scholar Ann. Physik 2, 55 (1948). 10.1002/andp.19484370105 CASWeb of Science®Google Scholar K. B. Eisenthal and S. Siegel, J. Chem. Phys. 41, 652 (1964); 10.1063/1.1725941 CASWeb of Science®Google Scholar J. Chem. Phys. 42, 814 (1965). Google Scholar R. A. Cellarius, Photochem. Photobiol. 6, 91 (1967). 10.1111/j.1751-1097.1967.tb08793.x CASWeb of Science®Google Scholar M. Hauser, U. K. A. Klein, and U. Gösele, Z. Phys. Chem. (N.F.) 101, 255 (1976). 10.1524/zpch.1976.101.1-6.255 CASWeb of Science®Google Scholar A. Blumen, Nuovo Cimento 63B, 50 (1981). 10.1007/BF02721411 CASWeb of Science®Google Scholar T. Marszalek, A. Baczynski, W. Orzeszko, and A. Rozploch, Z. Naturforsch. 35a, 85 (1980). CASGoogle Scholar M. D. Ediger, R. P. Domingue, and M. D. Fayer, J. Chem. Phys. 80, 1246 (1984). 10.1063/1.446802 CASWeb of Science®Google Scholar M. N. Berberan-Santos and M. J. E. Prieto, XIIUPAC Symp, Photochem. Lisboa 1986, Abstracts, p. 496. Google Scholar M. Tachiya, Chem. Phys. Lett. 33, 289 (1975). 10.1016/0009-2614(75)80158-8 CASWeb of Science®Google Scholar P. Infelta, Chem. Phys. Lett. 61, 88 (1979). 10.1016/0009-2614(79)85092-7 CASWeb of Science®Google Scholar N. J. Turro and A. Yekta, J. Am. Chem. Soc. 100, 5951 (1978). 10.1021/ja00486a062 CASWeb of Science®Google Scholar A. Henglein and R. Scheerer, Ber. Bunsenges. Phys. Chem. 82, 1107 (1978). 10.1002/bbpc.19780821017 CASWeb of Science®Google Scholar T. Ban., K. Kasatani, M. Kawasaki, and H. Sato, Photochem. Photobiol. 37, 131 (1983). 10.1111/j.1751-1097.1983.tb04448.x CASWeb of Science®Google Scholar H. Sato, M. Kawasaki, K. Kasatani, N. Nakashima, and K. Yoshihara, Bull. Chem. Soc. Japan 56, 3588 (1983). 10.1246/bcsj.56.3588 CASWeb of Science®Google Scholar H. Sato, M. Kawasaki, K. Kasatani, N. Kusumoto, N. Nakashima, and K. Yoshihara, Chem. Lett. Japan 1980, 1529. Google Scholar H. Sato, Y. Kusomoto, N. Nakashima, and K. Yoshihara, Chem. Phys. Lett. 71, 326 (1980). 10.1016/0009-2614(80)80175-8 CASWeb of Science®Google Scholar J. H. Baxendaleand, M. A. J. Rodgers, Chem. Phys. Lett. 72, 424 (1980). 10.1016/0009-2614(80)80322-8 Web of Science®Google Scholar M. P. Pileni, B. Lerebours, P. Brochette, and Y. Chevalier, J. Photochem. 28, 273 (1985). 10.1016/0047-2670(85)87038-6 CASWeb of Science®Google Scholar T. Miyashita, T. Murakata, Y. Yamaguchi, and M. Matsuda, J. Phys. Chem. 89, 497 (1985). 10.1021/j100249a026 CASWeb of Science®Google Scholar T. Miyashita, T. Murakata, and M. Matsuda, J. Phys. Chem. 87, 4529 (1983). 10.1021/j100245a038 CASWeb of Science®Google Scholar K. Kano, Y. Ueno, and S. Hashimoto, J. Phys. Chem. 89, 3161 (1985). 10.1021/j100260a042 CASWeb of Science®Google Scholar M. Van der Auweraer, J. C. Dederen, E. Geladé, and F. C. De Schryver, J. Chem. Phys. 74, 1140 (1981). 10.1063/1.441221 CASWeb of Science®Google Scholar E. Geladé and F. C. De Schryver, J. Photochem. 18, 223 (1982). 10.1016/0047-2670(82)85003-X Web of Science®Google Scholar F. C. De Schryver, Y. Croonen, E. Geladé, M. Van der Auweraer, J. C. Dederen, E. Roelants, N. Boens, and K. U. Leuven, in Surfactants in Solution, K. L. Mittal and B. Lindman, Eds., Vol. 1, Plenum, 1984, p. 663. 10.1007/978-1-4899-2280-9_41 Google Scholar A. Malliaris, J. Lang, and R. Zana, J. Phys. Chem. 90, 655 (1986). 10.1021/j100276a035 CASWeb of Science®Google Scholar A. Malliaris, J. Lang, and R. Zana, J. Chem. Soc. Faraday Trans. 182, 109 (1986). 10.1039/f19868200109 Web of Science®Google Scholar A. Malliaris, J. Lang, and R. Zana, J. Coll. Interface Sci. 110, 237 (1986). 10.1016/0021-9797(86)90372-3 CASWeb of Science®Google Scholar P. Lianos, M. Dinh-cao, J. Lang, and R. Zana, J. Chim. Phys. 78, 497 (1981). 10.1051/jcp/1981780497 CASWeb of Science®Google Scholar G. S. Singhal, E. Rabinowitch, J. Hevesi, and V. Srinivasan, Photochem. Photobiol. 11, 531 (1970). 10.1111/j.1751-1097.1970.tb06024.x CASPubMedWeb of Science®Google Scholar Y. Usui and A. Gotou, Photochem. Photobiol. 29, 165 (1979). 10.1111/j.1751-1097.1979.tb09275.x CASWeb of Science®Google Scholar S. S. Atik and J. K. Thomas, J. Am. Chem. Soc. 103, 4367 (1981). 10.1021/ja00405a013 CASWeb of Science®Google Scholar M. Almgren and J. E. Löfroth, J. Coll. Interface Sci. 81, 486 (1981). 10.1016/0021-9797(81)90430-6 CASWeb of Science®Google Scholar S. M. B. Costa and A. L. Macanita, J. Phys. Chem. 84, 2408 (1980). 10.1021/j100456a015 CASWeb of Science®Google Scholar S. M. B. Costa, M. R. Aires de Barros, and J. P. Conde, J. Photochem. 28, 153 (1985). 10.1016/0047-2670(85)87027-1 CASWeb of Science®Google Scholar Y. Waka, K. Hamamoto, and N. Mataga, Chem. Phys. Lett. 53, 242 (1978). 10.1016/0009-2614(78)85388-3 CASWeb of Science®Google Scholar J. A. Delaire, M. A. J. Rodgers, and S. E. Webber, J. Phys. Chem. 88, 6219 (1984). 10.1021/j150669a033 CASWeb of Science®Google Scholar M. Mitsuzuka, K. Kikuchi, H. Kokubun, and Y. Usui, J. Photochem. 29, 363 (1985). 10.1016/0047-2670(85)85008-5 CASWeb of Science®Google Scholar T. Miyashita and M. Matsuda, Bull. Chem. Soc. Japan 58, 3031 (1985). 10.1246/bcsj.58.3031 CASWeb of Science®Google Scholar H. Ziemiecki and W. R. Cherry, J. Am. Chem. Soc. 103, 4479 (1981). 10.1021/ja00405a031 CASWeb of Science®Google Scholar A. M. Braun, M. Krieg, N. J. Turro, M. Aikawa, I. R. Gould, G. A. Graf, and P. C. C. Lee, J. Am. Chem. Soc. 103, 7312 (1981). 10.1021/ja00414a045 CASWeb of Science®Google Scholar K. Glasle, U. K. A. Klein, and M. Hauser, J. Mol. Struct. 84, 353 (1982). 10.1016/0022-2860(82)85266-6 Web of Science®Google Scholar P. P. Infelta, M. Grëtzel, and J. K. Thomas, J. Phys. Chem. 78, 190 (1974). 10.1021/j100595a021 CASWeb of Science®Google Scholar M. Almgren, P. Stilbs, J. Alsins, P. Linse, and N. Kamenka, J. Phys. Chem. 89, 2666 (1985). 10.1021/j100258a047 CASWeb of Science®Google Scholar M. Almgren, P. Linse, M. Van der Auweraer, F. C. De Schryver, E. Geladé, and Y. Croonen, J. Phys. Chem. 88, 289 (1984). 10.1021/j150646a025 CASWeb of Science®Google Scholar M. Almgren, G. Gunnarsson, and P. Linse, Chem. Phys. Lett. 85, 451 (1982). 10.1016/0009-2614(82)83492-1 CASWeb of Science®Google Scholar J. E. Löfroth and M. Almgren, J. Phys. Chem. 86, 1636 (1982). 10.1021/j100206a031 Web of Science®Google Scholar M. Almgren, S. Swarup, and J. E. Löfroth, J. Phys. Chem. 89, 4621 (1985). 10.1021/j100267a042 CASWeb of Science®Google Scholar Y. Croonen, E. Celadé, M. Van der Zegel, M. Van der Auweraer, H. Vanderdriessche, F. C. De Schryver, and M. Almgren, J. Phys. Chem. 87, 1426 (1983). 10.1021/j100231a029 CASWeb of Science®Google Scholar G. Rothenberger, P. P. Infelta, and M. Grätzel, J. Phys. Chem. 85, 1850 (1981). 10.1021/j150613a016 CASWeb of Science®Google Scholar M. D. Hatlee, J. J. Kozak, G. Rothenberger, P. P. Infelta, and M. Grätzel, J. Phys. Chem. 84, 1508 (1980). 10.1021/j100449a017 CASWeb of Science®Google Scholar P. P. Infelta and M. Grätzel, J. Chem. Phys. 78, 5280 (1983). 10.1063/1.445360 CASWeb of Science®Google Scholar C. K. Grätzel and M. Grätzel, J. Phys. Chem. 86, 2710 (1982). 10.1021/j100211a031 Web of Science®Google Scholar M. P. Pileni and M. Grätzel, J. Phys. Chem. 84, 1822 (1980). 10.1021/j100451a016 CASWeb of Science®Google Scholar P. Hall and B. Selinger, J. Phys. Chem. 85, 2941 (1981). 10.1021/j150620a019 CASWeb of Science®Google Scholar P. Hall and B. Selinger, Z. Phys. Chem. N.F. 141, 77 (1984). 10.1524/zpch.1984.141.1.077 CASWeb of Science®Google Scholar Y. Nakamura, Y. Imakura, T. Kato, and Y. Morita, J. Chem. Soc., Chem. Commun., 887 (1977). Google Scholar T. Wolff, N. Müller, and G. von Bünau, J. Photochem. 22, 61 (1983). 10.1016/0047-2670(93)80009-E CASWeb of Science®Google Scholar T. Wolff, N. Müller, J. Photochem. 23, 131 (1983). 10.1016/0047-2670(83)80055-0 CASWeb of Science®Google Scholar Y. Nakamura, Y. Imakura, and Y. Morita, Chem. Lett. 965 (1978). Google Scholar R. Fargues, M. T. Maurette, E. Oliveros, M. Rivière, and A. Lattes, Nouv. J. Chim. 3, 487 (1979). CASWeb of Science®Google Scholar J. K. Thomas, Chem. Rev. 80, 283 (1980). 10.1021/cr60326a001 CASWeb of Science®Google Scholar I. Willner, W. E. Ford, J. W. Otvos, and M. Calvin, Nature 280, 823 (1979). 10.1038/280823a0 CASWeb of Science®Google Scholar J. H. Fendler and P. Tundo, Ace. Chem. Res. 17, 3 (1984). 10.1021/ar00097a001 CASWeb of Science®Google Scholar W. E. Ford, J. W. Otvos, and M. Calvin, Proc. Natl. Acad. Sci. U.S.A. 76, 3590 (1979). 10.1073/pnas.76.8.3590 CASPubMedWeb of Science®Google Scholar T. Wolff, Ber. Bunsenges. Phys. Chem. 86, 1132 (1982). 10.1002/bbpc.198200052 CASWeb of Science®Google Scholar H. Mayer and J. Sauer, Tetrah. Lett. 24, 4091, 4095 (1983). 10.1016/S0040-4039(00)88269-6 CASWeb of Science®Google Scholar V. Ramesh and V. Ramamurthy, J. Photochem. 24, 395 (1984). 10.1016/0047-2670(84)80020-9 CASWeb of Science®Google Scholar K. Kalyanasundaram, F. Grieser, and J. K. Thomas, Chem. Phys. Lett. 51, 501 (1977). 10.1016/0009-2614(77)85410-9 CASWeb of Science®Google Scholar N. J. Turro, K.-C. Liu, M.-F. Chow, and P. Lee, Photochem. Photobiol. 27, 523 (1978). 10.1111/j.1751-1097.1978.tb07641.x CASWeb of Science®Google Scholar N. J. Turro and M. Aikawa, J. Am. Chem. Soc. 102, 4866 (1980). 10.1021/ja00535a003 CASWeb of Science®Google Scholar M. Scrilec and L. J. C. Love, J. Phys. Chem. 85, 2047 (1981). 10.1021/j150614a019 Web of Science®Google Scholar R. R. Hautala and R. L. Letsinger, J. Org. Chem. 36, 3762 (1971). 10.1021/jo00823a022 Web of Science®Google Scholar J. B. S. Bonilha, H. Chaimovich, V. G. Toscano, and F. Quina, J. Phys, Chem. 83, 2463 (1979). CASWeb of Science®Google Scholar T. Wolff, J. Photochem. 18, 285 (1982). 10.1016/0047-2670(82)85012-0 CASWeb of Science®Google Scholar N. J. Turro and W. R. Cherry, J. Am. Chem. Soc. 100, 7431 (1978). 10.1021/ja00491a060 CASWeb of Science®Google Scholar N. J. Turro and J. Mattay, J. Am. Chem. Soc. 103, 4200 (1981). 10.1021/ja00404a037 CASWeb of Science®Google Scholar N. J. Turro and G. C. Weed, J. Am. Chem. Soc. 105, 1861 (1983). 10.1021/ja00345a031 CASWeb of Science®Google Scholar T. Wolff, J. Photochem. 18, 265 (1982). Google Scholar T. Ulrich and U. E. Steiner, Chem. Phys. Lett. 112, 365 (1984). 10.1016/0009-2614(84)85759-0 CASWeb of Science®Google Scholar P. P. Infelta, M. Grätzel, and J. H. Fendler, J. Am. Chem. Soc. 102, 1479 (1980). 10.1021/ja00525a001 CASWeb of Science®Google Scholar J. H. Fendler, Acc. Chem. Res. 13, 7 (1980). 10.1021/ar50145a002 CASWeb of Science®Google Scholar M. Grätzel and J. K. Thomas, J. Phys. Chem. 78, 2248 (1974). 10.1021/j100615a014 Web of Science®Google Scholar Y. Gauduel, A. Migus, J. L. Martin, Y. Lecarpentier, and A. Antonetti, Ber. Bunsenges. Phys. Chem. 89, 218 (1985). 10.1002/bbpc.19850890304 CASWeb of Science®Google Scholar S. Hautecloque, D. Grand, and A. Bernas, J. Phys. Chem. 89, 2705 (1985). 10.1021/j100258a053 CASWeb of Science®Google Scholar R. Arce and L. Kevan, J. Chem. Soc. Faraday Trans. 181, 1025 (1985). 10.1039/f19858101025 Web of Science®Google Scholar R. Arce and L. Kevan, J. Chem. Soc., Faraday Trans. 181, 1669 (1985). 10.1039/f19858101669 Web of Science®Google Scholar A. Plonka and L. Kevan, J. Phys. Chem. 89, 2087 (1985). 10.1021/j100256a057 CASWeb of Science®Google Scholar E. Szajdzinska-Pietek, R. Maldonado, L. Kevan, and R. R. M. Jones, J. Am. Chem. Soc. 107, 6467 (1985). 10.1021/ja00309a007 CASWeb of Science®Google Scholar K. H. Lee and P. de Mayo, J. Chem. Soc. Chem. Commun., 493 (1979). Google Scholar P. de Mayoand L. K. Sydnes, J. Chem. Soc. Chem. Commun., 994 (1980). Google Scholar N. Berenjian, P. de Mayo, M. Sturgeon, L. K. Sydnes, and A. C. Weedon, Can. J. Chem. 60, 426 (1982). 10.1139/v82-064 Web of Science®Google Scholar R. Fargues, M. T. Maurette, E. Oliveros, M. Rivière, and A. Lattes, J. Photochem. 18, 101 (1982). 10.1016/0047-2670(82)80012-9 Web of Science®Google Scholar Y. Nakamura, T. Kato, and Y. Morita, Tetrah. Lett. 22, 1025 (1981). 10.1016/S0040-4039(01)82856-2 CASWeb of Science®Google Scholar K. Muthuramu, N. Ramnath, and V. Ramamurthy, J. Org. Chem. 48, 1872 (1983). 10.1021/jo00159a016 CASWeb of Science®Google Scholar H. Mayer, F. Schuster, and J. Sauer, Tetrah. Lett. 27, 1289 (1986). 10.1016/S0040-4039(00)84240-9 CASWeb of Science®Google Scholar R. Braun, F. Schuster, and J. Sauer, Tetrah. Lett. 27, 1285 (1986). 10.1016/S0040-4039(00)84239-2 CASWeb of Science®Google Scholar K. Kalyanasundaram, M. Grätzel, and J. K. Thomas, J. Am. Chem. Soc. 97, 3915 (1975). 10.1021/ja00847a008 CASWeb of Science®Google Scholar M. Almgren and S. Swarup, J. Phys. Chem. 86, 4212 (1982). 10.1021/j100218a024 CASWeb of Science®Google Scholar M. Almgren and S. Swarup, J. Coll. Interface Sci. 91, 256 (1983). 10.1016/0021-9797(83)90330-2 CASWeb of Science®Google Scholar P. Stilbs, J. Coll. Interface Sci. 89, 547 (1982). 10.1016/0021-9797(82)90206-5 CASWeb of Science®Google Scholar P. Ekwall. L. Mandell, and P. Solyom, J. Coll. Interface Sci. 35, 519 (1971). 10.1016/0021-9797(71)90210-4 CASWeb of Science®Google Scholar T. Nash, J. Coll. Interface Sci. 13, 134 (1958). 10.1016/0095-8522(58)90016-3 CASGoogle Scholar L. S. C. Wan, J. Pharm. Sci. 55, 1395 (1966). 10.1002/jps.2600551214 CASWeb of Science®Google Scholar A. J. Hyde and D. W. M. Johnstone, J. Coll. Interface Sci. 53, 349 (1975). 10.1016/0021-9797(75)90050-8 CASWeb of Science®Google Scholar S. Gravsholt, J. Coll. Interface Sci. 57, 575 (1976). 10.1016/0021-9797(76)90236-8 CASWeb of Science®Google Scholar M. Angel, H. Hoffmann, M. Löbl., K. Reizlein, H. Thurn, and I. Wunderlich, Progr. Coll. Polymer Sci. 69, 12 (1984). CASWeb of Science®Google Scholar N. Müller, T. Wolff, and G. von Bünau, J. Photochem. 24, 37 (1984). 10.1016/0047-2670(84)80004-0 Web of Science®Google Scholar T. Wolff and G. von Bünau, Ber. Bunsenges. Phys. Chem. 88, 1098 (1984). 10.1002/bbpc.198400014 CASWeb of Science®Google Scholar S. Yamamoto and K.-H. Grellrnann, Chem. Phys. Lett. 85, 73 (1982). 10.1016/0009-2614(82)83464-7 CASWeb of Science®Google Scholar W. Bergmann and M. J. McLean, Chem. Rev. 28, 367 (1941). 10.1021/cr60090a006 CASWeb of Science®Google Scholar S.-Y. Hou, C. G. Dupuy, M. J. McAuliffe, D. A. Hrovat, and K. B. Eisenthal, J. Am. Chem. Soc. 103, 6982 (1981). 10.1021/ja00413a044 CASWeb of Science®Google Scholar J. Saltiel and J. L. Chariton, in Rearrangements in Ground and Excited States, P. de Mayo, Ed., Vol. 3, Academic Press, New York, 1980, pp. 25–89. 10.1016/B978-0-12-481303-8.50007-X Google Scholar T. Wolff and G. von Bünau, J. Photochem. 35, 239 (1986). 10.1016/0047-2670(86)85032-8 CASWeb of Science®Google Scholar T. Wolff and G. von Bünau, J. Coll. Interface Sci. 99, 299 (1984). 10.1016/0021-9797(84)90114-0 CASWeb of Science®Google Scholar T. Wolff, T. A. Suck, C.-S. Emming, and G. von Bünau, Progr. Coll. Polym. Sci. 73, 18 (1987). 10.1007/3-798-50724-4_58 CASGoogle Scholar D. Balasubramanian, S. Subramani, and C. Kumar, Nature 254, 252 (1975). 10.1038/254252a0 CASPubMedWeb of Science®Google Scholar K. Kano, Y. Tanaka, T. Ogawa, M. Shimomura, Y. Okahata, and T. Kunitake, Chem. Lett., 421 (1980). Google Scholar T. Kunitake, N. Nakashima, M. Shimomura, Y. Okahata, K. Kano, and T. Ogawa, J. Am. Chem. Soc. 102, 6642 (1980). 10.1021/ja00541a081 CASWeb of Science®Google Scholar J. Sunamoto, K. Iwamoto, Y. Mohri, and T. Kominato, J. Am. Chem. Soc. 104, 5502 (1982). 10.1021/ja00384a049 CASWeb of Science®Google Scholar K. A. Zachariasse, " Polarity and Viscosity Probes in Lipids," in Excited State Probes in Biochemistry and Biology, A. Szabo, ed., Plenum Press, New York, 1985. Google Scholar N. E. Schore and N. J. Turro, J. Am. Chem. Soc. 96, 306 (1974). 10.1021/ja00808a077 CASWeb of Science®Google Scholar T.-H. Lin, W. R. Cherry, and W. L. Mattice, Polym. Commun. 27, 37 (1986). CASWeb of Science®Google Scholar O. S. Khalil and A. J. Sonnessa, Mol. Photochem. 8, 399 (1977). CASWeb of Science®Google Scholar T. Wolff, J. Coll. Interface Sci. 83, 658 (1981). 10.1016/0021-9797(81)90364-7 CASWeb of Science®Google Scholar K. Muthuramu and V. Ramamurthy, J. Photochem. 26, 57 (1984). 10.1016/0047-2670(84)85026-1 CASWeb of Science®Google Scholar M. Katsumata, K. Kasatani, M. Kawasaki, and H. Sato, Bull. Chem. Soc. Japan 55, 717 (1982). 10.1246/bcsj.55.717 CASWeb of Science®Google Scholar A. Yekta, M. Aikawa, and N. J. Turro, Chem. Phys. Lett. 63, 543 (1979). 10.1016/0009-2614(79)80710-1 CASWeb of Science®Google Scholar M. Almgren and S. Swarup, J. Phys. Chem. 87, 876 (1983). 10.1021/j100228a036 CASWeb of Science®Google Scholar P. K. F. Koglin, D. J. Miller, J. Steinwandel, and M. Hauser, J. Phys. Chem. 85, 2363 (1981). 10.1021/j150616a014 CASWeb of Science®Google Scholar E. Roelants, E. Geladé, J. Smid, and F. C. De Schryver, J. Coll. Interface Sci. 107, 337 (1986). 10.1016/0021-9797(85)90186-9 Web of Science®Google Scholar A. Malliaris, J. Le Moigne, J. Sturm, and R. Zana, J. Phys. Chem. 89, 2709 (1985). 10.1021/j100258a054 CASWeb of Science®Google Scholar J.-E. Löfroth and M. Almgren, " Fluorescence Quenching Aggregation Numbers in a non-Ionic Micelle Solution," in Surfactants in Solution, K. L. Mittal and B. Lindman, eds., Plenum, New York, 1984, Vol. 1, pp. 627–643. Google Scholar M. Corti and V. Degiorgio, J. Phys. Chem. 85, 1442 (1981). 10.1021/j150610a033 CASWeb of Science®Google Scholar P.-G. Nilsson, H. Wennerström, and B. Lindman, Chem. Scr. 25, 96 (1985). Google Scholar E. Geladé and F. C. De Schryver: " Fluorescence: A Method to Obtain Information about Reverse Micelles," in Reverse Micelles, P. L. Luisi and B. E. Straub, Eds., Plenum, New York, 1984, pp. 143–164. Google Scholar P. P. Infelta, Chem. Phys. Lett. 61, 88 (1979). 10.1016/0009-2614(79)85092-7 CASWeb of Science®Google Scholar K. J. Mysels and L. H. Princen, J. Phys. Chem. 63, 1696 (1959). 10.1021/j150580a032 CASWeb of Science®Google Scholar M. H. Abdel-Kader, A. M. Braun, and N. Paillous, J. Chem. Soc., Faraday Trans. 181, 245 (1985). 10.1039/f19858100245 Web of Science®Google Scholar L. K. Patterson and E. Vieil, J. Phys. Chem. 77, 1191 (1973). 10.1021/j100628a022 CASWeb of Science®Google Scholar T. Wolff and G. von Bünau, Ber. Bunsenges. Phys. Chem. 86, 225 (1982). 10.1002/bbpc.19820860310 CASWeb of Science®Google Scholar T. Wolff: Photochemische Untersuchungen in mikroheterogenen Losungen, Habilitationsschrift, Siegen, 1983. Google Scholar Y. Saito and T. Sato, J. Phys. Chem. 89, 2110 (1985). 10.1021/j100256a061 CASWeb of Science®Google Scholar A. Nakajima, Bull. Chem. Soc. Japan 46, 2602 (1973). 10.1246/bcsj.46.2602 CASWeb of Science®Google Scholar K. Kalyanasundaram and J. K. Thomas, J. Am. Chem. Soc. 99, 2039 (1977). 10.1021/ja00449a004 CASWeb of Science®Google Scholar K. A. Zachariasse, B. Kozankiewicz, and W. Kühnle, in Surfactants in Solutions, Vol. 1, K. L. Mittal and B. Lindman, Eds., Plenum Press, New York, 1984, p. 565. 10.1007/978-1-4899-2280-9_35 Google Scholar K. A. Zachariasse, N. van Phuc, and B. Kozankiewicz, J. Phys. Chem. 85, 2676 (1981). 10.1021/j150618a022 CASWeb of Science®Google Scholar M. S. Fernandez and P. Fromherz, J. Phys. Chem. 81, 1755 (1977). 10.1021/j100533a009 CASWeb of Science®Google Scholar S. Bayliss, J. Chem. Phys. 18, 292 (1950). 10.1063/1.1747621 CASWeb of Science®Google Scholar K. A. Zachariasse, W. L. C. Vaz, C. Sotomayor, and W. Kühnle, Biochem. Biophys. Acta 688, 323 (1982). 10.1016/0005-2736(82)90343-1 CASPubMedWeb of Science®Google Scholar L. M. Almeida, W. L. C. Vaz, K. A. Zachariasse, and V. M. C. Madeira, Biochem. 23, 4714 (1984). 10.1021/bi00315a029 CASPubMedWeb of Science®Google Scholar B. R. Suddaby, P. E. Brown, J. C. Russel, and D. G. Whitten, J. Am. Chem. Soc. 107, 5609 (1985). 10.1021/ja00306a005 CASWeb of Science®Google Scholar J. C. Eriksson and G. Gillberg, Acta Chem. Scand. 20, 2019 (1966). 10.3891/acta.chem.scand.20-2019 CASWeb of Science®Google Scholar P. Mukerjee, J. R. Cardinal, and N. R. Desai, in Micellization, Solubilization, and Microemulsions, K. L. Mittal, Ed., Vol. 1, Plenum Press, New York, 1977, p. 171. 10.1007/978-1-4684-2346-4_10 Google Scholar J. R. Cardinal and P. Mukerjee, J. Phys. Chem. 82, 1614 (1978). 10.1021/j100503a009 CASWeb of Science®Google Scholar P. Mukerjee and J. R. Cardinal, J. Phys. Chem. 82, 1620 (1978). 10.1021/j100503a010 CASWeb of Science®Google Scholar P. Mukerjee, Ber. Bunsenges. Phys. Chem. 82, 931 (1978). 10.1002/bbpc.19780820944 Web of Science®Google Scholar J. Ulmius. B. Linaman, G. Lindbloom, and T. Drakenberg, J. Coll. Interface Sci. 65, 88 (1978). 10.1016/0021-9797(78)90261-8 CASWeb of Science®Google Scholar E. J. Bowen, N. J. Holder, and G. B. Woodger, J. Phys. Chem. 66, 2491 (1962). 10.1021/j100818a040 CASWeb of Science®Google Scholar T. Wolff, Ber. Bunsenges. Phys. Chem. 85, 145 (1981). 10.1002/bbpc.19810850212 CASWeb of Science®Google Scholar H. V. Tartar and A. L. M. Lelong, J. Phys. Chem. 59, 1185 (1955). 10.1021/j150534a001 CASWeb of Science®Google Scholar W. Philippoff, Disc. Faraday Soc. 11, 96 (1951). 10.1039/df9511100096 Google Scholar F. Reiss-Husson and V. Luzzati, J. Phys. Chem. 68, 3504 (1964). 10.1021/j100794a011 CASWeb of Science®Google Scholar P. A. Narayama, A. S. W. Li, and L. Kevan, J. Am. Chem. Soc. 103, 3603 (1981). 10.1021/ja00402a073 Web of Science®Google Scholar M. Petrin, A. H. Maki, and S. Ghosh, Chem. Phys. Lett. 128, 425 (1986). 10.1016/0009-2614(86)80391-8 CASWeb of Science®Google Scholar G. von Bünau, H. Meling, and T. Wolff, in preparation. Google Scholar Citing Literature Advances in Photochemistry, Volume 14 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX