Surface and Thin-Film Analysis
2002; Linguagem: Inglês
10.1002/14356007.b06_023
AutoresH. Bubert, John C. Rivière, Heinrich F. Arlinghaus, Herbert Hutter, Holger Jenett, Peter Bauer‐Gottwein, L. Palmetshofer, L. Fabry, S. Pahlke, A. Quentmeier, Karsten Hinrichs, Wieland Hill, Bernd Gruska, Arthur Röseler, Gernot Friedbacher,
Tópico(s)Chemical and Physical Properties of Materials
ResumoThe article contains sections titled: 1. Introduction 2. Electron Detection 2.1. X-Ray Photoelectron Spectroscopy (XPS) 2.1.1. Principles 2.1.2. Instrumentation 2.1.2.1. Vacuum Requirements 2.1.2.2. X-Ray Sources 2.1.2.3. Synchrotron Radiation 2.1.2.4. Electron Energy Analyzers 2.1.2.5. Spatial Resolution 2.1.3. Spectral Information and Chemical Shifts 2.1.4. Quantification, Depth Profiling, and Imaging 2.1.4.1. Quantification 2.1.4.2. Depth Profiling 2.1.4.3. Imaging 2.1.5. The Auger Parameter 2.1.6. Applications 2.1.6.1. Catalysis 2.1.6.2. Polymers 2.1.6.3. Corrosion and Passivation 2.1.6.4. Adhesion 2.1.6.5. Superconductors 2.1.6.6. Interfaces 2.2. Ultraviolet Photoelectron Spectroscopy (UPS) 2.3. Auger Electron Spectroscopy (AES) 2.3.1. Principles 2.3.2. Instrumentation 2.3.2.1. Vacuum Requirements 2.3.2.2. Electron Sources 2.3.2.3. Electron Energy Analyzers 2.3.3. Spectral Information 2.3.4. Quantification and Depth Profiling 2.3.4.1. Quantification 2.3.4.2. Depth Profiling 2.3.5. Applications 2.3.5.1. Grain Boundary Segregation 2.3.5.2. Semiconductor Technology 2.3.5.3. Thin Films and Interfaces 2.3.5.4. Surface Segregation 2.4. Scanning Auger Microscopy (SAM) 2.5. Other Electron-Detecting Techniques 2.5.1. Auger Electron Appearance Potential Spectroscopy (AEAPS) 2.5.2. Electron Energy Loss Methods 2.5.2.1. Electron Energy Loss Spectroscopy (EELS) and Core-Electron Energy Loss Spectroscopy (CEELS) 2.5.2.2. High-Resolution Electron Energy Loss Spectroscopy (HREELS) 2.5.3. Diffraction Methods 2.5.3.1. Low-Energy Electron Diffraction (LEED) 2.5.3.2. Reflection High-Energy Electron Diffraction (RHEED) 2.5.4. Ion-Excitation Method 2.5.4.1. Ion (Excited) Auger Electron Spectroscopy (IAES) 2.5.4.2. Ion-Neutralization Spectroscopy (INS) 2.5.4.3. Metastable Quenching Spectroscopy (MQS) 2.5.5. Inelastic Electron Tunneling Spectroscopy (IETS) 3. Ion Detection 3.1. Secondary Ion Mass Spectrometry 3.1.1. Static Secondary Ion Mass Spectrometry (SSIMS) 3.1.1.1. Principles 3.1.1.2. Instrumentation 3.1.1.2.1. Ion Sources 3.1.1.2.2. Mass Analyzers 3.1.1.3. Quantification 3.1.1.4. Spectral Information 3.1.1.5. Applications 3.1.1.5.1. Oxide Films 3.1.1.5.2. Interfaces 3.1.1.5.3. Polymers 3.1.1.5.4. Biosensors 3.1.1.5.5. Surface Reactions 3.1.1.5.6. Imaging 3.1.1.5.7. Ultrashallow Depth Profiling 3.1.2. Dynamic SIMS 3.1.2.1. Principles 3.1.2.2. Instrumentation 3.1.2.2.1. Ion Sources 3.1.2.2.2. Mass Analyzers 3.1.2.2.3. Detectors 3.1.2.3. Spectral Information 3.1.2.4. Quantification 3.1.2.5. Mass Spectra 3.1.2.6. Depth Profiles 3.1.2.7. Imaging 3.1.2.8. Applications 3.1.2.8.1. Implantation Profiles 3.1.2.8.2. Layer Analysis 3.1.2.8.3. 3D Bulk Element Distribution 3.2. Secondary Neutral Mass Spectrometry (SNMS) 3.2.1. General Principles 3.2.2. Electron-Beam and HF-Plasma SNMS 3.2.2.1. Principles 3.2.2.2. Instrumentation 3.2.2.3. Spectral Information 3.2.2.4. Quantification 3.2.2.5. Element Depth Profiling 3.2.2.6. Applications 3.2.3. Laser-SNMS 3.2.3.1. Principles 3.2.3.1.1. Nonresonant Laser-SNMS 3.2.3.1.2. Resonant Laser-SNMS 3.2.3.1.3. Experimental Setup 3.2.3.1.4. Ionization Schemes 3.2.3.2. Instrumentation 3.2.3.3. Spectral Information 3.2.3.4. Quantification 3.2.3.5. Applications 3.2.3.5.1. Nonresonant Laser-SNMS 3.2.3.5.2. Resonant Laser-SNMS 3.3. Ion-Scattering Techniques 3.3.1. Rutherford Backscattering Spectroscopy (RBS) 3.3.1.1. Principles 3.3.1.2. Instrumentation 3.3.1.3. Spectral Information 3.3.1.4. Quantification 3.3.1.5. Applications 3.3.2. Low-Energy Ion Scattering (LEIS) 3.3.2.1. Principles 3.3.2.2. Instrumentation 3.3.2.3. Information 3.3.2.4. Quantification 3.3.2.5. Applications 3.4. Other Ion-Detecting Techniques 3.4.1. Desorption Methods 3.4.1.1. Electron-Stimulated Desorption (ESD) and Electron-Stimulated Desorption Ion Angular Distribution (ESDIAD) 3.4.1.2. Thermal Desorption Spectroscopy (TDS) 3.4.2. Glow Discharge Mass Spectroscopy (GDMS) 3.4.3. Fast Atom Bombardment Mass Spectroscopy (FABMS) 3.4.4. Atom Probe Microscopy 3.4.4.1. Atom Probe Field-Ion Microscopy (APFIM) 3.4.4.2. Position-Sensitive Atom Probe (POSAP) 4. Photon Detection 4.1. Total-Reflection X-ray Fluorescence Analysis (TXRF) 4.1.1. Principles 4.1.2. Instrumentation 4.1.3. Spectral Information 4.1.4. Quantification 4.1.5. Applications 4.1.5.1. Particulate and Film-Type Surface Contamination 4.1.5.2. Semiconductors 4.1.5.2.1. Depth Profiling by TXRF and Multilayer Structures 4.1.5.2.2. Vapor Phase Decomposition (VPD) and Droplet Collection 4.2. Glow Discharge Optical Emission Spectroscopy (GD-OES) 4.2.1. Principles 4.2.2. Instrumentation 4.2.3. Spectral Information 4.2.4. Quantification 4.2.5. Depth Profiling 4.2.6. Applications 4.3. Surface-Sensitive IR and Raman Spectroscopy; Ellipsometry 4.3.1. Reflection - Absorption IR Spectroscopy (RAIRS) 4.3.1.1. Principles 4.3.1.2. Instrumentation and Applications 4.3.2. Surface Raman Spectroscopy 4.3.2.1. Principles 4.3.2.2. Surface-Enhanced Raman Scattering (SERS) 4.3.2.2.1. Instrumentation 4.3.2.2.2. Spectral Information 4.3.2.2.3. Applications 4.3.2.3. Nonlinear Optical Spectroscopy 4.3.3. UV - VIS - IR Ellipsometry (ELL) 4.3.3.1. Principles 4.3.3.2. Instrumentation 4.3.3.3. Applications 4.4. Other Photon-Detecting Techniques 4.4.1. Appearance-Potential Methods 4.4.1.1. Soft X-Ray Appearance-Potential Spectroscopy (SXAPS) 4.4.1.2. Disappearance-Potential Spectroscopy (DAPS) 4.4.2. Inverse Photoemission Spectroscopy (IPES) and Bremsstrahlung Isochromat Spectroscopy (BIS) 4.4.3. Ion-Beam Spectrochemical Analysis (IBSCA) 5. Scanning Probe Microscopy 5.1. Atomic Force Microscopy (AFM) 5.1.1. Principles 5.1.2. Instrumentation 5.1.3. Applications 5.2. Scanning Tunneling Microscopy (STM) 5.2.1. Principles 5.2.2. Instrumentation 5.2.3. Lateral and Spectroscopic Information 5.2.4. Applications 6. Summary and Comparison of Techniques 7. Surface Analytical Equipment Suppliers 8. Acknowledgement
Referência(s)