Artigo Revisado por pares

Doping- and interference-free measurement of I2D/IG in suspended monolayer graphene blisters

2015; Wiley; Volume: 252; Issue: 11 Linguagem: Inglês

10.1002/pssb.201552314

ISSN

1521-3951

Autores

Dominik Metten, Guillaume Froehlicher, Stéphane Berciaud,

Tópico(s)

Plasmonic and Surface Plasmon Research

Resumo

physica status solidi (b)Volume 252, Issue 11 p. 2390-2394 Invited Article Doping- and interference-free measurement of / in suspended monolayer graphene blisters Dominik Metten, Dominik Metten Institut de Physique et Chimie des Matériaux de Strasbourg and NIE, UMR 7504, Université de Strasbourg and CNRS, 23 rue du Lœss, BP43, 67034 Strasbourg Cedex 2, FranceSearch for more papers by this authorGuillaume Froehlicher, Guillaume Froehlicher Institut de Physique et Chimie des Matériaux de Strasbourg and NIE, UMR 7504, Université de Strasbourg and CNRS, 23 rue du Lœss, BP43, 67034 Strasbourg Cedex 2, FranceSearch for more papers by this authorStéphane Berciaud, Corresponding Author Stéphane Berciaud [email protected] Institut de Physique et Chimie des Matériaux de Strasbourg and NIE, UMR 7504, Université de Strasbourg and CNRS, 23 rue du Lœss, BP43, 67034 Strasbourg Cedex 2, France Corresponding author: e-mail [email protected]Search for more papers by this author Dominik Metten, Dominik Metten Institut de Physique et Chimie des Matériaux de Strasbourg and NIE, UMR 7504, Université de Strasbourg and CNRS, 23 rue du Lœss, BP43, 67034 Strasbourg Cedex 2, FranceSearch for more papers by this authorGuillaume Froehlicher, Guillaume Froehlicher Institut de Physique et Chimie des Matériaux de Strasbourg and NIE, UMR 7504, Université de Strasbourg and CNRS, 23 rue du Lœss, BP43, 67034 Strasbourg Cedex 2, FranceSearch for more papers by this authorStéphane Berciaud, Corresponding Author Stéphane Berciaud [email protected] Institut de Physique et Chimie des Matériaux de Strasbourg and NIE, UMR 7504, Université de Strasbourg and CNRS, 23 rue du Lœss, BP43, 67034 Strasbourg Cedex 2, France Corresponding author: e-mail [email protected]Search for more papers by this author First published: 14 August 2015 https://doi.org/10.1002/pssb.201552314Citations: 11Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract We report on strong interference effects on the ratio of the integrated intensities of the Raman 2D- and G-mode features (herein denoted ) in suspended graphene monolayers. Free from substrate-induced doping and residual charge inhomogeneity, suspended samples are an ideal platform to study the intrinsic properties of graphene. Here, we demonstrate that , measured on a pressurized suspended graphene blister, depends very sensitively on the distance between the bulged graphene membrane and the underlying substrate. The data obtained on three different samples are fit to theoretically predicted Raman enhancement factors and allow to extract an intrinsic, i.e., doping- and interference-free, value of for undoped, unscreened graphene at a laser photon energy of . References 1 J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, Science 315, 490–493 (2007). 10.1126/science.1136836 CASPubMedWeb of Science®Google Scholar 2 K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, Solid State Commun. 146, 351–355 (2008). 10.1016/j.ssc.2008.02.024 CASWeb of Science®Google Scholar 3 X. Du, I. Skachko, A. Barker, and E. Y. Andrei, Nature Nanotechnol. 3, 491–495 (2008). 10.1038/nnano.2008.199 CASPubMedWeb of Science®Google Scholar 4 C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science 321, 385–388 (2008). 10.1126/science.1157996 CASPubMedWeb of Science®Google Scholar 5 S. Berciaud, S. Ryu, L. E. Brus, and T. F. Heinz, Nano Lett. 9, 346–352 (2009). 10.1021/nl8031444 CASPubMedWeb of Science®Google Scholar 6 Z. H. Ni, T. Yu, Z. Q. Luo, Y. Y. Wang, L. Liu, C. P. Wong, J. Miao, W. Huang, and Z. X. Shen, ACS Nano 3, 569–574 (2009). 10.1021/nn900130g CASPubMedWeb of Science®Google Scholar 7 D. C. Elias, R. V. Gorbachev, A. S. Mayorov, S. V. Morozov, A. A. Zhukov, P. Blake, L. A. Ponomarenko, I. V. Grigorieva, K. S. Novoselov, F. Guinea, and A. K. Geim, Nature Phys. 7, 701–704 (2011). 10.1038/nphys2049 CASWeb of Science®Google Scholar 8 S. Berciaud, M. Potemski, and C. Faugeras, Nano Lett. 14, 4548–4553 (2014). 10.1021/nl501578m CASPubMedWeb of Science®Google Scholar 9 C. Faugeras, S. Berciaud, P. Leszczynski, Y. Henni, K. Nogajewski, M. Orlita, T. Taniguchi, K. Watanabe, C. Forsythe, P. Kim, R. Jalil, A. K. Geim, D. M. Basko, and M. Potemski, Phys. Rev. Lett. 114, 126804 (2015). 10.1103/PhysRevLett.114.126804 CASPubMedWeb of Science®Google Scholar 10 K. I. Bolotin, K. J. Sikes, J. Hone, H. L. Stormer, and P. Kim, Phys. Rev. Lett. 101, 096802 (2008). 10.1103/PhysRevLett.101.096802 CASPubMedWeb of Science®Google Scholar 11 A. S. Mayorov, D. C. Elias, I. S. Mukhin, S. V. Morozov, L. A. Ponomarenko, K. S. Novoselov, A. K. Geim, and R. V. Gorbachev, Nano Lett. 12(9), 4629–4634 (2012), DOI: 10.1021/nl301922d. 10.1021/nl301922d CASPubMedWeb of Science®Google Scholar 12 S. P. Koenig, N. G. Boddeti, M. L. Dunn, and J. S. Bunch, Nature Nanotechnol. 6, 543–546 (2011). 10.1038/nnano.2011.123 CASPubMedWeb of Science®Google Scholar 13 J. Zabel, R. R. Nair, A. Ott, T. Georgiou, A. K. Geim, K. S. Novoselov, and C. Casiraghi, Nano Lett. 12, 617–621 (2011). 10.1021/nl203359n CASWeb of Science®Google Scholar 14 J.-U. Lee, D. Yoon, and H. Cheong, Nano Lett. 12, 4444–4448 (2012). 10.1021/nl301073q CASPubMedWeb of Science®Google Scholar 15 A. L. Kitt, Z. Qi, S. Rémi, H. S. Park, A. K. Swan, and B. B. Goldberg, Nano Lett. 13, 2605–2610 (2013). 10.1021/nl4007112 CASPubMedWeb of Science®Google Scholar 16 D. Metten, F. Federspiel, M. Romeo, and S. Berciaud, Phys. Rev. Appl. 2, 054008 (2014). 10.1103/PhysRevApplied.2.054008 CASWeb of Science®Google Scholar 17 C. Chen, S. Rosenblatt, K. I. Bolotin, W. Kalb, P. Kim, I. Kymissis, H. L. Stormer, T. F. Heinz, and J. Hone, Nature Nanotechnol. 4, 861–867 (2009). 10.1038/nnano.2009.267 CASPubMedWeb of Science®Google Scholar 18 A. Reserbat-Plantey, L. Marty, O. Arcizet, N. Bendiab, and V. Bouchiat, Nature Nanotechnol. 7, 151–155 (2012). 10.1038/nnano.2011.250 CASPubMedWeb of Science®Google Scholar 19 R. A. Barton, I. R. Storch, V. P. Adiga, R. Sakakibara, B. R. Cipriany, B. Ilic, S. P. Wang, P. Ong, P. L. McEuen, J. M. Parpia, and H. G. Craighead, Nano Lett. 12, 4681–4686 (2012). 10.1021/nl302036x CASPubMedWeb of Science®Google Scholar 20 P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, Appl. Phys. Lett. 91, 063124 (2007). 10.1063/1.2768624 CASWeb of Science®Google Scholar 21 A. Reserbat-Plantey, S. Klyatskaya, V. Reita, L. Marty, O. Arcizet, M. Ruben, N. Bendiab, and V. Bouchiat, J. Opt. 15, 114010 (2013). 10.1088/2040-8978/15/11/114010 CASWeb of Science®Google Scholar 22 Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim. S. Lee, Y. Li, S.-N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, Nature Nanotechnol. (2015), DOI: 10.1038/nnano.2015.118. Google Scholar 23 D. Yoon, H. Moon, Y.-W. Son, J. S. Choi, B. H. Park, Y. H. Cha, Y. D. Kim, and H. Cheong, Phys. Rev. B 80, 125422 (2009). 10.1103/PhysRevB.80.125422 CASWeb of Science®Google Scholar 24 N. Jung, A. C. Crowther, N. Kim, P. Kim, and L. Brus, ACS Nano 4, 7005–7013 (2010). 10.1021/nn102227u CASPubMedWeb of Science®Google Scholar 25 W. Bao, G. Liu, Z. Zhao, H. Zhang, D. Yan, A. Deshpande, B. Le Roy, and C. N. Lau, Nano Res. 3, 98–102 (2010). 10.1007/s12274-010-1013-5 CASWeb of Science®Google Scholar 26 J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead, and P. L. McEuen, Nano Lett. 8, 2458–2462 (2008). 10.1021/nl801457b CASPubMedWeb of Science®Google Scholar 27 A. C. Ferrari and D. M. Basko, Nature Nanotechnol. 8, 235–246 (2013). 10.1038/nnano.2013.46 CASPubMedWeb of Science®Google Scholar 28 L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rep. 473, 51–87 (2009). 10.1016/j.physrep.2009.02.003 CASWeb of Science®Google Scholar 29 J. E. Lee, G. Ahn, J. Shim, Y. S. Lee, and S. Ryu, Nature Commun. 3, 1024 (2012). 10.1038/ncomms2022 CASPubMedWeb of Science®Google Scholar 30 G. Froehlicher and S. Berciaud, Phys. Rev. B 91, 205413 (2015). 10.1103/PhysRevB.91.205413 CASWeb of Science®Google Scholar 31 D. Metten, F. Federspiel, M. Romeo, and S. Berciaud, Phys. Status Solidi B 250, 2681–2688 (2013). 10.1002/pssb.201300220 CASWeb of Science®Google Scholar 32 S. Berciaud, X. Li, H. Htoon, L. E. Brus, S. K. Doorn, and T. F. Heinz, Nano Lett. 13, 3517–3523 (2013). 10.1021/nl400917e CASPubMedWeb of Science®Google Scholar 33 V. N. Popov and P. Lambin, Phys. Rev. B 87, 155425 (2013). 10.1103/PhysRevB.87.155425 CASWeb of Science®Google Scholar 34 A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, Nature Nanotechnol. 3, 210–215 (2008). 10.1038/nnano.2008.67 CASPubMedWeb of Science®Google Scholar 35 D. M. Basko, S. Piscanec, and A. C. Ferrari, Phys. Rev. B 80, 165413 (2009). 10.1103/PhysRevB.80.165413 CASWeb of Science®Google Scholar 36 S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and F. Mauri, Nature Mater. 6, 198–201 (2007). 10.1038/nmat1846 CASPubMedWeb of Science®Google Scholar 37 C. Casiraghi, S. Pisana, K. S. Novoselov, A. K. Geim, and A. C. Ferrari, Appl. Phys. Lett. 91, 233108 (2007). 10.1063/1.2818692 CASWeb of Science®Google Scholar 38 J. W. Weber, V. E. Calado, and M. C. M. van de Sanden, Appl. Phys. Lett. 97, 091904 (2010). 10.1063/1.3475393 CASWeb of Science®Google Scholar 39 G. Vuye, S. Fisson, V. Nguyen Van, Y. Wang, J. Rivory, and F. Abels, Thin Solid Films 233, 166–170 (1993). 10.1016/0040-6090(93)90082-Z CASWeb of Science®Google Scholar 40 D. M. Basko, Phys. Rev. B 78, 125418 (2008). 10.1103/PhysRevB.78.125418 CASWeb of Science®Google Scholar 41 D. M. Basko, New J. Phys. 11, 095011 (2009). 10.1088/1367-2630/11/9/095011 Web of Science®Google Scholar 42 A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, Nano Lett. 9, 30–35 (2009). 10.1021/nl801827v CASPubMedWeb of Science®Google Scholar 43 A. Ismach, C. Druzgalski, S. Penwell, A. Schwartzberg, M. Zheng, A. Javey, J. Bokor, and Y. Zhang, Nano Lett. 10, 1542–1548 (2010). 10.1021/nl9037714 CASPubMedWeb of Science®Google Scholar 44 O. Frank, J. Vejpravova, V. Holy, L. Kavan, and M. Kalbac, Carbon 68, 440–451 (2014). 10.1016/j.carbon.2013.11.020 CASWeb of Science®Google Scholar 45 A. Mahmood, C.-S. Yang, J.-F. Dayen, S. Park, M. V. Kamalakar, D. Metten, S. Berciaud, J.-O. Lee, and B. Doudin, Carbon 86, 256–263 (2015). 10.1016/j.carbon.2015.01.040 CASWeb of Science®Google Scholar Citing Literature Volume252, Issue11November 2015Pages 2390-2394 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX