Molecular Mechanisms of Antibiotic Action
1966; American College of Physicians; Volume: 64; Issue: 5 Linguagem: Inglês
10.7326/0003-4819-64-5-1087
ISSN1539-3704
Autores Tópico(s)Antibiotic Resistance in Bacteria
ResumoReview1 May 1966Molecular Mechanisms of Antibiotic ActionWILLIAM CARTER, M.D., KENNETH S. MCCARTY, PH.D.WILLIAM CARTER, M.D.Search for more papers by this author, KENNETH S. MCCARTY, PH.D.Search for more papers by this authorAuthor, Article, and Disclosure Informationhttps://doi.org/10.7326/0003-4819-64-5-1087 SectionsAboutPDF ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinkedInRedditEmail ExcerptOUTLINE*I. IntroductionII. Review of the molecular mechanisms of replication, information transfer, and protein synthesisIII. Antibiotics which modify the molecular mechanisms of replication, information transfer, and protein synthesisA. Assembly of nucleotide substrates PsicofuranineB. Replication of genetic information Mitomycins, Porfiromycin, Nalidixic Acid and GriseofulvinC. Transcription of genetic information Actinomycin DD. Translation of genetic information1. Amino acid activation2. The ribosomea. mRNA binding Chloramphenicolb. tRNA binding Tetracyclinesc. mRNA translation Streptomycin, Kanamycin and Neomycin3. Peptide synthesis Puromycin4. Locus Unclear Erythromycin, LincomycinIV. Antibiotics that influence the function or biosynthesis of the...References1. GALE EF: Mechanisms of antibiotic action. Pharmacol. Rev. 15: 481, 1963. MedlineGoogle Scholar2. FEINGOLD DS: Antimicrobial chemotherapeutic agents: The nature of their action and selective toxicity. New Eng. J. Med. 269: 900, 957, 1963. CrossrefMedlineGoogle Scholar3. BURCHALLFERONEHITCHINGS JJRGH: Antibacterial chemotherapy. Ann. Rev. Pharmacol. 5: 53, 1965. CrossrefMedlineGoogle Scholar4. GERHART JC: Subunits for control and catalysis in aspartate transcarbamylase. Brookhaven Sympos. Biol. 17: 222, 1964. MedlineGoogle Scholar5. CAIRNS J: The bacterial chromosome and its manner of replication as seen by autoradiography. J. Molec. Biol. 6: 208, 1963. CrossrefMedlineGoogle Scholar6. BESSMAN MJ: The replication of DNA in cell-free systems, in Molecular Genetics, Part I, edited by TAYLOR, J. H. Academic Press, New York, 1963, p. 1. Google Scholar7. HOLLEYAPGAREVERETTMADISONMARQUISEEMERRILLPENSWICKZAMIR RWJGAJTMSHJRA: Structure of a ribonucleic acid. Science 147: 1462, 1965. CrossrefMedlineGoogle Scholar8. ARLINGHAUSSHAEFFERSCHWEET RJR: Mechanism of peptide bond formation in polypeptide synthesis. Proc. Nat. Acad. Sci. U. S. A. 51: 1291, 1964. CrossrefMedlineGoogle Scholar9. DINTZISKNOPF HMPM: Cell-free synthesis of hemoglobin, in A Symposium, Informational Macromolecules, edited by VOGEL, H. J., BRYSON, V., LAMPEN, J. O. Academic Press, New York, 1963, p. 375. Google Scholar10. SALASSMITHSTANLEYWAHBAOCHOA MMAWAAJS: Direction of reading of the genetic message. J. Biol. Chem. 240: 3988, 1965. CrossrefMedlineGoogle Scholar11. BRENNERSTRETTONKAPLAN SAOS: Genetic code: the 'nonsense' triplets for chain termination and their suppression. Nature (London) 206: 994, 1965. CrossrefMedlineGoogle Scholar12. SLECHTA L: Studies on the mode of action of psicofuranine. Biochem. Pharmacol. 5: 96, 1960. CrossrefMedlineGoogle Scholar13. IYERSZYBALSKI VNW: Mitomycins and porfiromycin: chemical mechanism of activation and cross-linking of DNA. Science 145: 55, 1964. CrossrefMedlineGoogle Scholar14. IYERSZYBALSKI VNW: A molecular mechanism of mitomycin action: linking of complementary DNA strands. Proc. Nat. Acad. Sci. U. S. A. 50: 355, 1963. CrossrefMedlineGoogle Scholar15. MCNALL EG: Biochemical studies on the metabolism of griseofulvin. Arch. Derm. (Chicago) 81: 657, 1960. CrossrefGoogle Scholar16. GOSSDEITZCOOK WAWHTM: Mechanism of action of nalidixic acid on Escherichia coli. II. Inhibition of deoxyribonucleic acid synthesis. J. Bact. 89: 1068, 1965. CrossrefMedlineGoogle Scholar17. KIRK JM: The mode of action of actinomycin D. Biochim. Biophys. Acta 42: 167, 1960. CrossrefMedlineGoogle Scholar18. KERSTEN W: Interaction of actinomycin C with constituents of nucleic acids. Biochim. Biophys. Acta 47: 610, 1961. CrossrefMedlineGoogle Scholar19. LERMAN LS: Structural considerations in the interaction of DNA and acridines. J. Molec. Biol. 3: 18, 1961. CrossrefMedlineGoogle Scholar20. GOLDBERGRABINOWITZREICH IHME: Basis of actinomycin action. I. DNA binding and inhibition of RNA-polymerase synthetic reactions by actinomycin. Proc. Nat. Acad. Sci. U. S. A. 48: 2094, 1962. CrossrefMedlineGoogle Scholar21. HAMILTONFULLERREICH LDWE: X-ray diffraction and molecular model building studies of the interaction of actinomycin with nucleic acids. Nature (London) 198: 538, 1963. CrossrefMedlineGoogle Scholar22. HURWITZFURTHMALAMYALEXANDER JJJMM: The role of deoxyribonucleic acid in ribonucleic acid synthesis. III. The inhibition of the enzymatic synthesis of ribonucleic acid and deoxyribonucleic acid by actinomycin D and proflavin. Proc. Nat. Acad. Sci. U. S. A. 48: 1222, 1962. CrossrefMedlineGoogle Scholar23. HASELKORN R: Actinomycin D as a probe for nucleic acid secondary structure. Science 143: 682, 1964. CrossrefMedlineGoogle Scholar24. SAMUELS LD: Actinomycin and its effects. Influence on an effector pathway for hormonal control. New Eng. J. Med. 271: 1252, 1301, 1964. CrossrefMedlineGoogle Scholar25. GALEPAINE EFTF: The assimilation of amino-acids by bacteria. 12. The action of inhibitors and antibiotics on the accumulation of free glutamic acid and the formation of combined glutamate in Staphylococcus aureus. Biochem. J. 48: 298, 1951. CrossrefMedlineGoogle Scholar26. GALEFOLKES EFJP: The assimilation of amino-acids by bacteria. 15. Actions of antibiotics on nucleic acid and protein synthesis in Staphylococcus aureus. Biochem. J. 53: 493, 1953. CrossrefMedlineGoogle Scholar27. PARDEEPAIGENPRESTIDGE ABKLS: A study of the ribonucleic acid of normal and chloromycetin-inhibited bacteria by zone electrophoresis. Biochim. Biophys. Acta 23: 162, 1957. CrossrefMedlineGoogle Scholar28. HOROWITZLOMBARDCHARGAFF JAE: Aspects of the stability of a bacterial ribonucleic acid. J. Biol. Chem. 233: 1517, 1958. CrossrefMedlineGoogle Scholar29. JARDETZKYJULIAN OGR: Chloramphenicol inhibition of polyuridylic acid binding to E. coli ribosomes. Nature (London) 201: 397, 1964. CrossrefMedlineGoogle Scholar30. NOMURAHOSOKAWA MK: Biosynthesis of ribosomes: fate of chloramphenicol particles and of pulse-labeled RNA in Escherichia coli. J. Molec. Biol. 12: 242, 1965. CrossrefMedlineGoogle Scholar31. WEISBERGERWOLFEARMENTROUT ASSS: Inhibition of protein synthesis in mammalian cell-free systems by chloramphenicol. J. Exp. Med. 120: 161, 1964. CrossrefMedlineGoogle Scholar32. WEISBERGERWOLFE ASS: Effect of chloramphenicol on protein synthesis. Fed. Proc. 23: 976, 1964. MedlineGoogle Scholar33. MARKSBURKASCHLESSINGER PAERD: Protein synthesis in erythroid cells. I. Reticulocyte ribosomes active in stimulating amino acid incorporation. Proc. Nat. Acad. Sci. U. S. A. 48: 2163, 1962. CrossrefMedlineGoogle Scholar34. LEVINTHALKEYNANHIGA CAA: Messenger RNA turnover and protein synthesis in B. subtilis inhibited by actinomycin D. Ibid., p. 1631. Google Scholar35. JARDETZKY O: Studies on the mechanism of action of chloramphenicol. I. The conformation of chloramphenicol in solution. J. Biol. Chem. 238: 2498, 1963. CrossrefMedlineGoogle Scholar36. INGALLSHERMANCOCKBURNKLEIN DJDFR: Amelioration by ingestion of phenylalanine of toxic effects of chloramphenicol on bone marrow. New Eng. J. Med. 272: 180, 1965. CrossrefMedlineGoogle Scholar37. KUCANLIPMANN ZF: Differences in chloramphenicol sensitivity of cell-free amino acid polymerization systems. J. Biol. Chem. 239: 516, 1964. CrossrefMedlineGoogle Scholar38. KOHN KW: Mediation of divalent metal ions in the binding of tetracycline to macromolecules. Nature (London) 191: 1156, 1961. CrossrefMedlineGoogle Scholar39. SUAREZNATHANS GD: Inhibition of amino-acyl-sRNA binding to ribosomes by tetracycline. Biochem. Biophys. Res. Commun. 18: 743, 1965. CrossrefGoogle Scholar40. HIEROWSKI M: Inhibition of protein synthesis by Chlortetracycline in the E. coli in vitro system. Proc. Nat. Acad. Sci. U. S. A. 53: 594, 1965. CrossrefMedlineGoogle Scholar41. DOLUISIOMARTIN JTAN: Metal complexation of the tetracycline hydrochlorides. J. Med. Chem. 6: 16, 1963. CrossrefMedlineGoogle Scholar42. ANANDDAVISARMITAGE NBDAK: Uptake of streptomycin by Escherichia coli. Nature (London) 185: 23, 1960. CrossrefMedlineGoogle Scholar43. BROCK TD: Action of streptomycin and related antibiotics. Fed. Proc. 23: 965, 1964. MedlineGoogle Scholar44. FLAKSCOXWHITE JGECJR: Inhibition of polypeptide synthesis by streptomycin. Biochem. Biophys. Res. Commun. 7: 385, 1962. CrossrefMedlineGoogle Scholar45. DAVIES JE: Studies on the ribosomes of streptomycin-sensitive and resistant strains of Escherichia coli. Proc. Nat. Acad. Sci. U. S. A. 51: 659, 1964. CrossrefMedlineGoogle Scholar46. HASHIMOTO K: Streptomycin resistance in Escherichia coli analyzed by transduction. Genetics 45: 49, 1960. CrossrefMedlineGoogle Scholar47. LEBOYCOXFLAKS PSECJG: The chromosomal site specifying a ribosomal protein in Escherichia coli. Proc. Nat. Acad. Sci. U. S. A. 52: 1367, 1964. CrossrefMedlineGoogle Scholar48. DAVIESGILBERTGORINI JWL: Streptomycin, suppression, and the code. Proc. Nat. Acad. Sci. U. S. A. 51: 883, 1964. CrossrefMedlineGoogle Scholar49. FRIEDMANWEINSTEIN SMIB: Lack of fidelity in the translation of synthetic polyribonucleotides. Proc. Nat. Acad. Sci. U.S.A. 52: 988, 1964. CrossrefMedlineGoogle Scholar50. TRAUTMONRO RRRE: The puromycin reaction and its relation to protein synthesis. J. Molec. Biol. 10: 63, 1964. CrossrefMedlineGoogle Scholar51. NATHANS D: Puromycin inhibition of protein synthesis: incorporation of puromycin into peptide chains. Proc. Nat. Acad. Sci. U. S. A. 51: 585, 1964. CrossrefMedlineGoogle Scholar52. TAUBMANSOYOUNGDAVIECOCORAN SBAGFEEWJW: Effect of erythromycin on protein biosynthesis in Bacillus subtilis , in Antimicrobial Agents and Chemotherapy, 1963, edited by SYLVESTER, J. C. Braun-Brumfield, Ann Arbor, 1964, p. 395. Google Scholar53. BARBERWATERWORTH MPM: Antibacterial activity of lincomycin and pristinamycin: a comparison with erythromycin. Brit. Med. J. 2: 603, 1964. CrossrefMedlineGoogle Scholar54. PARKJOHNSON JTMJ: Accumulation of labile phosphate in Staphylococcus aureus grown in the presence of penicillin. J. Biol. Chem. 179: 585, 1949. CrossrefMedlineGoogle Scholar55. PARK JT: Uridine-5′-pyrophosphate derivatives. I. Isolation from Staphylococcus aureus. II. A structure common to three derivatives. J. Biol. Chem. 194: 877, 885, 1952. CrossrefMedlineGoogle Scholar56. PERKINS HR: Chemical structure and biosynthesis of bacterial cell walls. Bact. Rev. 27: 18, 1963. CrossrefMedlineGoogle Scholar57. BADDILEYBUCHANANMARTINRAJBHANDARY JJGROUL: Teichoic acid from the walls of Staphyloccocus aureus. H. Location of phosphate and alanine residues. Biochem. J. 85: 49, 1962. CrossrefMedlineGoogle Scholar58. BRUMFITTWARDLAWPARK WACJT: Development of lysozyme-resistance in Micrococcus lysodiekticus and its association with an increased O-acetyl content of the cell wall. Nature (London) 181: 1783, 1958. CrossrefMedlineGoogle Scholar59. INGRAMSALTON VMMR: The action of flugrodinitrobenzene on bacterial cell walls. Biochim. Biophys. Acta 24: 9, 1957. CrossrefMedlineGoogle Scholar60. MCQUILLEN K: Bacterial protoplasts, in The Bacteria, A Treatise on Structure and Function, Vol. I, edited by GUNSALUS, I. C., STANIER, R. Y. Academic Press, New York, 1960, p. 249. Google Scholar61. MITCHELLMOYLE PJ: Osmotic function and structure in bacteria. Sympos. Soc. Gen. Microbiol. 6: 150, 1956. Google Scholar62. MANDELSTAM J: Preparation and properties of the mucopeptides of cell walls of gram-negative bacteria. Biochem. J. 84: 294, 1962. CrossrefMedlineGoogle Scholar63. STROMINGERTHRENNSCOTT JLRHSS: Oxyamycin, a competitive antagonist of the incorporation of D-alanine into a uridine nucleotide in Staphylococcus aureus. J. Amer. Chem. Soc. 81: 3803, 1959. CrossrefGoogle Scholar64. STROMINGERITOTHRENN JLERH: Competitive inhibition of enzymatic reactions by oxamycin. J. Amer. Chem. Soc. 82: 998, 1960. CrossrefGoogle Scholar65. NEUHAUSLYNCH FCJL: The enzymatic synthesis of D-alanyl-D-alanine. III. On the inhibition of D-alanyl-D-alanine synthetase by the antibiotic D-cycloserine. Biochemistry (Wash.) 3: 471, 1964. CrossrefMedlineGoogle Scholar66. SAUKKONEN JJ: Acid-soluble nucleotides of Staphylococcus aureus: massive accumulation of a derivative of cytidine diphosphate in the presence of penicillin. Nature (London) 192: 816, 1961. CrossrefMedlineGoogle Scholar67. WISEPARK EMJT: Penicillin: its basic site of action as an inhibitor of a peptide cross-linking reaction in cell wall mucopeptide synthesis. Proc. Nat. Acad. Sci. U.S.A. 54: 75, 1965. CrossrefMedlineGoogle Scholar68. ANDERSONMATSUHASHIHASKINSTROMINGER JSMMAJL: Lipidphosphoacetylmuramyl-pentapeptide and lipid-phosphodisac-charidepentapeptide: presumed membrane transport intermediates in cell wall synthesis. Proc. Nat. Acad. Sci. U.S.A. 53: 881, 1965. CrossrefMedlineGoogle Scholar69. TIPPERSTROMINGER DJJL: Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-D-alanyl-D-alanine. Proc. Nat. Acad. Sci. U.S.A. 54: 1133, 1965. CrossrefMedlineGoogle Scholar70. ITOSTROMINGER EJL: Enzymatic synthesis of the peptide in bacterial uridine nucleotides. I. Enzymatic addition of L-alanine, D-glutamic acid and L-lysine. II. Enzymatic synthesis and addition of D-alanyl-D-alanine. J. Biol. Chem. 237, 2689, 2696, 1962. CrossrefGoogle Scholar71. CHATTERJEEPARK ANJT: Biosynthesis of cell wall mucopeptide by a particulate fraction from Staphylococcus aureus. Proc. Nat. Acad. Sci. U.S.A. 51: 9, 1964. CrossrefMedlineGoogle Scholar72. PARK JT: Multiple effects of penicillin, in Antimicrobial Agents and Chemotherapy, 1963. Edited by SYLVESTER, J. C. Braun-Brumfield, Ann Arbor, 1964, p. 366. Google Scholar73. COLLINSRICHMOND JFMH: A structural similarity between N-acetyl-muramic acid and penicillin as a basis for antibiotic action. Nature (London) 195: 142, 1962. CrossrefMedlineGoogle Scholar74. ROGERSMANDELSTAM HJJ: Inhibition of cell-wall-mucopeptide formation in Escherichia coli by benzylpenicillin and 6-[D(-)-α-aminophenylacetamido]-penicillanic acid (ampicillin). Biochem. J. 84: 299, 1962. CrossrefMedlineGoogle Scholar75. ROGERSJELJASZEWICZ HJJ: Inhibition of the biosynthesis of cell-wall mucopeptides by the penicillins. A study of penicillin-sensitive and penicillin-resistant strains of Staphylococcus aureus. Biochem. J. 81: 576, 1961. CrossrefMedlineGoogle Scholar76. AYLIFFE GA: Induction of cephalosporinase and penicillinase in Proteus species. Nature (London) 201: 1032, 1964. CrossrefMedlineGoogle Scholar77. CHANGWEINSTEIN TWL: Isolation, characterization, and distribution of cephalosporinase, in Antimicrobial Agents and Chemotherapy, 1963, edited by SYLVESTER, J. C. Braun-Brumfield, Ann Arbor, 1964, p. 278. Google Scholar78. CHANGWEINSTEIN TWL: Inhibition of synthesis of the cell wall of Staphylococcus aureus by cephalothin. Science 143: 807, 1964. CrossrefMedlineGoogle Scholar79. BROWDERZYGMUNTYOUNGTAVORMINA HPWAJRPA: Lysostaphin: enzymic mode of action. Biochem. Biophys. Res. Commun. 19: 383, 1965. CrossrefMedlineGoogle Scholar80. GILBYFEWMCQUILLEN ARAVK: The chemical composition of the protoplast membrane of Micrococcus lysodeikticus. Biochim. Biophys. Acta 29: 21, 1958. CrossrefMedlineGoogle Scholar81. LEHNINGER AL: Energetics and mechanisms of electron transport and oxidative phosphorylation, in The Mitochondrion. W. A. Benjamin, Inc., New York, 1964, p. 106. Google Scholar82. MITCHELL P: Structure and function in microorganisms. Biochem. Soc. Sympos. 16: 73, 1959. MedlineGoogle Scholar83. ISHIKAWALEHNINGER SAL: Reconstitution of oxidative phosphorylation in preparations from Micrococcus lysodeikticus. J. Biol. Chem. 237: 2401, 1962. CrossrefGoogle Scholar84. PENEFSKYPULLMANDATTARACKER HSMEAE: Partial resolution of the enzymes catalyzing oxidative phosphorylation. II. Participation of a soluble adenosine triphosphatase in oxidative phosphorylation. J. Biol. Chem. 235: 3330, 1960. CrossrefMedlineGoogle Scholar85. THIMANN KV: Conditions of culture: oxygen and oxidations, in The Life of Bacteria, 2nd ed. Macmillan Co., New York, 1963, p. 193. Google Scholar86. VERNONMANGUM LPJH: Cytochromes of Bacillus megaterium and Bacillus subtilis. Arch. Biochem. Biophys. 90: 103, 1960. CrossrefMedlineGoogle Scholar87. HOTCHKISS RD: Gramicidin, tyrocidine, and tyrothricin. Advances Enzym. 4: 153, 1944. Google Scholar88. NEWTON BA: Site of action of polymyxin on Pseudomonas aeruginosa: antagonism by cations. J. Gen. Microbiol. 10: 491, 1954. CrossrefMedlineGoogle Scholar89. KINSKY SC: Membrane sterols and the selective toxicity of polyene antifungal antibiotics in Antimicrobial Agents and Chemotherapy, 1963, edited by SYLVESTER, J. C. Braun-Brumfield, Ann Arbor, 1964, p. 387. Google Scholar90. KINSKY SC: The effect of polyene antibiotics on permeability in Neurospora crassa. Biochem. Biophys. Res. Commun. 4: 353, 1961. CrossrefMedlineGoogle Scholar91. FEINGOLD DS: The action of amphotericin B on Mycoplasma laidlawii. Biochem. Biophys. Res. Commun. 19: 261, 1965. CrossrefMedlineGoogle Scholar92. BROCK TD: Magnesium binding as an explanation of the mode of action of novobiocin. Science 136: 316, 1962. CrossrefMedlineGoogle Scholar93. SMITHDAVIS DHBD: Inhibition of nucleic acid synthesis by novobiocin. Biochem. Biophys. Res. Commun. 18: 796. 1965. CrossrefGoogle Scholar This content is PDF only. To continue reading please click on the PDF icon. Author, Article, and Disclosure InformationAffiliations: Durham, North CarolinaFrom the Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, N. C.Dr. Carter, Fellow in Medicine, was supported by training grant 5T1-GM516-05 from the U. S. Public Health Service, Washington, D. C.Dr. McCarty is an Associate Professor of Biochemistry. His research is supported in part by grants GM-12805-01 and ACS-ACP 363 from the U. S. Public Health Service, Washington, D. C.Requests for reprints should be addressed to Kenneth S. McCarty, Ph.D., Department of Biochemistry, Duke University, Durham, N. C.*Antibiotics in bold face are currently in clinical use. PreviousarticleNextarticle Advertisement FiguresReferencesRelatedDetails Metrics Cited byTranscriptomic study of ciprofloxacin resistance in Streptomyces coelicolor A3(2)CycloserinPolymyxin B sulfate-induced pH-dependent increase in calcium influx in cultured fibroblastsFerritin structure and biosynthesisAltered BiosynthesisInteractions of nutrients with oral contraceptives and other drugsChemotherapy of human oncogenic viral infections: The possible role of interferon and reverse transcriptase inhibitorsEffects of Antibiotic Treatment on the Composition of Sheep Foetal FluidsRemediable Causes of Failure of “Appropriate” Antimicrobial TherapyAbsorption of Drugs through the SkinLincollycin: Fact, Fancy, and FutureLincomycin Versus Erythromycin: A Choice or an EchoEUGENE SANDERS, M.D.6 The Literature of Medicinal ChemistryReversible Respiratory Paralysis Associated with Polymyxin TherapyLARRY A LINDESMITH, M.D., R. DIXIE BAINES JR., M.D., D. BOYD BIGELOW, M.D., THOMAS L. PETTY, M.D.Mechanisms of Action of Antimicrobial AgentsThe Cephalosporin AntibioticsThe TetracyclinesPrevention of 5-FU Induced NADPH-D Translocation in Colonic Epithelium by Antibiotics and the Effect on the Intestinal Bacterial FloraAddendaAddenda 1 May 1966Volume 64, Issue 5Page: 1087-1113KeywordsAntibioticsBiochemistryBlood plasmaMedical servicesMolecular biologyProtein synthesisRespirationRibosomesTetracyclinesTransfer RNA ePublished: 1 December 2008 Issue Published: 1 May 1966 PDF downloadLoading ...
Referência(s)