Outro Revisado por pares

The Semiclassical Time‐Dependent Approach to Charge‐Transfer Processes

1992; Wiley; Linguagem: Inglês

10.1002/9780470141403.ch6

ISSN

1934-4791

Autores

Eric A. Gislason, Gérard Parlant, M. Sizun,

Tópico(s)

Photochemistry and Electron Transfer Studies

Resumo

The Semiclassical Time-Dependent Approach to Charge-Transfer Processes Eric A. Gislason, Eric A. Gislason Department of Chemistry, University of Illinois at Chicago, Chicago, IllinoisSearch for more papers by this authorGérard Parlant, Gérard Parlant Department of Chemistry, The Johns Hopkins University, Baltimore, MarylandSearch for more papers by this authorMuriel Sizun, Muriel Sizun Laboratoire des Collisions Atomiques et Moleculaires, Université de Paris-Sud, Orsay, FranceSearch for more papers by this author Eric A. Gislason, Eric A. Gislason Department of Chemistry, University of Illinois at Chicago, Chicago, IllinoisSearch for more papers by this authorGérard Parlant, Gérard Parlant Department of Chemistry, The Johns Hopkins University, Baltimore, MarylandSearch for more papers by this authorMuriel Sizun, Muriel Sizun Laboratoire des Collisions Atomiques et Moleculaires, Université de Paris-Sud, Orsay, FranceSearch for more papers by this author Book Editor(s):Michael Baer, Michael Baer Department of Physics and Applied Mathmatics, Soreq Nuclear Research Center, Yavne, IsraelSearch for more papers by this authorCheuk-Yiu Ng, Cheuk-Yiu Ng Ames Laboratory U.S., Department of Energy and Department of Chemistry, Iowa State University Ames, IowaSearch for more papers by this author First published: 01 January 1992 https://doi.org/10.1002/9780470141403.ch6Citations: 24Book Series:Advances in Chemical Physics AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary This chapter contains sections titled: Introduction Classical Path Formulation Classical Path Calculations—Total Cross Sections Classical Path Calculations—Differential Cross Sections General Features of Charge-Transfer Collisions Future Developments Involving the Classical Path Procedure Acknowledgements References (a) S. R. Leone, Ann. Rev. Phys. Chem. 35, 109 (1984); 10.1146/annurev.pc.35.100184.000545 CASWeb of Science®Google Scholar (b) V. M. Bierbaum and S. R. Leone, in Structure/Reactivity and Thermochemistry of Ions, edited by P. Ausloos and S. G. Lias, Reidel, Boston, 1987, p. 23; 10.1007/978-94-009-3787-1_3 Google Scholar (c) S. R. Leone and V. M. Bierbaum, Faraday Discuss. Chem. Soc. 84, 253 (1987). 10.1039/DC9878400253 CASWeb of Science®Google Scholar (a) J. H. Futrell, in Gaseous Ion Chemistry and Mass Spectrometry, edited by J. H. Futrell, Wiley-Interscience, New York, 1986, p. 201; Google Scholar (b) Int. J. Quant. Chem. 31, 133 (1987); 10.1002/qua.560310115 CASWeb of Science®Google Scholar (c) in Structure/Reactivity and Thermochemistry of Ions, edited by P. Ausloos and S. G. Lias, Reidel, Boston, 1987, p. 57. 10.1007/978-94-009-3787-1_4 Google Scholar Z. Herman and I. Koyano, J. Chem. Soc. Faraday Trans. II 83, 127 (1987). 10.1039/f29878300127 CASWeb of Science®Google Scholar F. Linder, in Invited Papers of the XV ICPEAC, edited by H. B. Gilbody, W. R. Newell, F. H. Read, and A. C. H. Smith, North-Holland, Amsterdam, 1988, p. 287. Web of Science®Google Scholar N. Kobayashi, in Ref. 4, p. 333. Google Scholar C. Y. Ng, in Techniques for the Study of Ion-Molecule Reactions, edited by J. M. Farrar and W. H. Saunders, Wiley, New York, 1988, p. 417. Web of Science®Google Scholar T. Baer, in Gas Phase Ion Chemistry, edited by M. T. Bowers, Academic, New York, 1979, Vol. 1, p. 153. 10.1016/B978-0-12-120801-1.50011-9 Google Scholar (a) P. M. Guyon and E. A. Gislason, in Topics in Current Chemistry: Synchrotron Radiation in Chemistry and Biology III, edited by E. Mandelkow, Springer, Berlin, 1989, Vol. 151, p. 161; Web of Science®Google Scholar (b) P. M. Guyon, G. Bellec, O. Dutuit, D. Gerlich, E. A. Gislason, and J. B. Ozenne, Bull. Soc. Roy. (Liege) 58, 187 (1989). CASGoogle Scholar J. C. Tully, in Dynamics of Molecular Collisions, Part B, edited by W. H. Miller, Plenum, New York, 1976, p. 217. 10.1007/978-1-4757-0644-4_5 Google Scholar A. W. Kleyn, J. Los, and E. A. Gislason, Phys. Rep. 90, 1 (1982). 10.1016/0370-1573(82)90092-8 CASWeb of Science®Google Scholar M. Baer, in Molecular Collision Dynamics, edited by J. M. Bowman, Springer-Verlag, Berlin, 1983, p. 117. 10.1007/978-3-642-81943-8_5 Web of Science®Google Scholar V. Sidis, in Collision Theory for Atoms and Molecules, edited by F. A. Gianturco, Plenum, New York, 1989, p. 343. 10.1007/978-1-4684-5655-4_10 Google Scholar M. R. Flannery, in Swarms of Ions and Electrons in Gases, edited by W. Lindinger, T. D. Mark, and F. Howorka, Springer-Verlag, New York, 1984, p. 103. 10.1007/978-3-7091-8773-9_7 Google Scholar M. R. Spalburg and E. A. Gislason, Chem. Phys. 94, 339 (1985). 10.1016/0301-0104(85)80053-7 CASWeb of Science®Google Scholar E. Pollack and Y. Hahn, Adv. At. Mol. Phys. 22, 243 (1986). 10.1016/S0065-2199(08)60338-3 CASWeb of Science®Google Scholar G. Parlant and E. A. Gislason, in Invited Papers of the XV ICPEAC, edited by H. B. Gilbody, W. R. Newell, F. H. Read, and A. C. H. Smith, North-Holland, Amsterdam, 1988, p. 357. Google Scholar V. Sidis, Adv. At. Mol. Opt. Phys. 26, 161 (1990). 10.1016/S1049-250X(08)60062-2 CASWeb of Science®Google Scholar P. M. Guyon, T. R. Govers, and T. Baer, Z. Phys. D 4, 89 (1986). 10.1007/BF01432501 CASWeb of Science®Google Scholar P. Archirel and B. Levy, Chem. Phys. 106, 51 (1986). 10.1016/0301-0104(86)87038-0 CASWeb of Science®Google Scholar M. Kimura and N. F. Lane, Adv. At. Mol. Opt. Phys. 26, 79 (1990). 10.1016/S1049-250X(08)60061-0 CASWeb of Science®Google Scholar C. H. Becker, J. Chem. Phys. 76, 5928 (1982). 10.1063/1.442947 CASWeb of Science®Google Scholar (a) M. Baer and H. Nakamura, J. Chem. Phys. 87, 4651 (1987); 10.1063/1.452828 CASWeb of Science®Google Scholar (b) M. Baer, G. Niedner-Schatteburg, and J. P. Toennies, J. Chem. Phys. 91, 4169 (1989); 10.1063/1.456794 CASWeb of Science®Google Scholar (c) V. Sidis, D. Grimbert, M. Sizun, and M. Baer, Chem. Phys. Lett. 163, 19 (1989); 10.1016/0009-2614(89)80004-1 CASWeb of Science®Google Scholar (d) M. Baer, C. L. Liao, R. Xu, S. Nourbahksh, G. D. Flesch, C. Y. Ng, and D. Neuhauser, J. Chem. Phys. 93, 4845 (1990); 10.1063/1.458674 CASWeb of Science®Google Scholar (e) M. Baer and C. Y. Ng, J. Chem. Phys. 93, 7787 (1990). 10.1063/1.459359 CASWeb of Science®Google Scholar D. C. Clary and D. M. Sonnenfroh, J. Chem. Phys. 90, 1686 (1989). 10.1063/1.456061 CASWeb of Science®Google Scholar (a) D. S. F. Crothers, Adv. At. Mol. Phys. 17, 55 (1981); 10.1016/S0065-2199(08)60067-6 CASWeb of Science®Google Scholar (b) J. B. Delos, Rev. Mod. Phys. 53, 287 (1981). 10.1103/RevModPhys.53.287 CASWeb of Science®Google Scholar G. D. Billing, Comput. Phys. Rept. 1, 237 (1984). 10.1016/0167-7977(84)90006-6 CASWeb of Science®Google Scholar D. R. Bates and R. H. G. Reid, Proc. Roy. Soc. (London) A 310, 1 (1969). 10.1098/rspa.1969.0058 CASWeb of Science®Google Scholar T. F. Moran, in Electron-Molecule Interactions and Their Applications, edited by L. G. Christophorou, Academic, New York, 1984, Vol. 2, p. 1. Google Scholar M. R. Flannery, P. C. Cosby, and T. F. Moran, J. Chem. Phys. 59, 5494 (1973). 10.1063/1.1679899 CASWeb of Science®Google Scholar M. R. Flannery, P. C. Cosby, and T. F. Moran, Chem. Phys. Lett. 27, 221 (1974). 10.1016/0009-2614(74)90208-5 CASWeb of Science®Google Scholar P. C. Cosby, T. F. Moran, and M. R. Flannery, J. Chem. Phys. 61, 1259 (1974). 10.1063/1.1682011 CASWeb of Science®Google Scholar T. F. Moran, M. R. Flannery, and P. C. Cosby, J. Chem. Phys. 61, 1261 (1974). 10.1063/1.1682048 CASWeb of Science®Google Scholar T. F. Moran, M. R. Flannery, and D. L. Albritton, J. Chem. Phys. 62, 2869 (1975). 10.1063/1.430825 CASWeb of Science®Google Scholar M. R. Flannery, K. J. McCann, and T. F. Moran, J. Chem. Phys. 63, 1462 (1975). 10.1063/1.431508 CASWeb of Science®Google Scholar T. F. Moran, K. J. McCann, and M. R. Flannery, J. Chem. Phys. 63, 3857 (1975). 10.1063/1.431881 CASWeb of Science®Google Scholar K. J. McCann, M. R. Flannery, J. V. Hornstein, and T. F. Moran, J. Chem. Phys. 63, 4998 (1975). 10.1063/1.431246 CASWeb of Science®Google Scholar T. F. Moran, K. J. McCann, M. R. Flannery, and D. L. Albritton, J. Chem. Phys. 65, 3172 (1976). 10.1063/1.433488 CASWeb of Science®Google Scholar T. F. Moran and M. R. Flannery, J. Chem. Phys. 66, 370 (1977). 10.1063/1.433643 CASWeb of Science®Google Scholar T. F. Moran, K. J. McCann, M. Cobb, R. F. Borkman, and M. R. Flannery, J. Chem. Phys. 74, 2325 (1981). 10.1063/1.441350 CASWeb of Science®Google Scholar A. F. Hedrick, T. F. Moran, K. J. McCann, and M. R. Flannery, J. Chem. Phys. 66, 24 (1977). 10.1063/1.433673 CASWeb of Science®Google Scholar S. B. Sears and A. E. DePristo, J. Chem. Phys. 77, 290 (1982). 10.1063/1.443653 CASWeb of Science®Google Scholar A. E. DePristo and S. B. Sears, J. Chem. Phys. 77, 298 (1982). 10.1063/1.443654 CASWeb of Science®Google Scholar A. E. DePrmisto, J. Chem. Phys. 78, 1237 (1983). 10.1063/1.444915 Web of Science®Google Scholar A. E. DePristo, J. Chem. Phys. 79, 1741 (1983). 10.1063/1.446018 CASWeb of Science®Google Scholar C. Y. Lee and A. E. DePristo, J. Chem. Phys. 80, 1116 (1984). 10.1063/1.446840 CASWeb of Science®Google Scholar C. Y. Lee and A. E. DePristo, J. Chem. Phys. 81, 3512 (1984). 10.1063/1.448079 CASWeb of Science®Google Scholar C. Y. Lee, A. E. DePristo, C. L. Liao, C. X. Liao, and C. Y. Ng, Chem. Phys. Lett. 116, 534 (1985). 10.1016/0009-2614(85)85210-6 CASWeb of Science®Google Scholar S. K. Cole and A. E. DePristo, J. Chem. Phys. 85, 1389 (1986). 10.1063/1.451227 CASWeb of Science®Google Scholar C. Y. Lee and A. E. DePristo, J. Am. Chem. Soc. 105, 6775 (1983). 10.1021/ja00361a001 CASWeb of Science®Google Scholar M. Kimura, Phys. Rev. A 32, 802 (1985). 10.1103/PhysRevA.32.802 CASWeb of Science®Google Scholar M. Kimura, S. Chapman, and N. F. Lane, Phys. Rev. A 33, 1619 (1986). 10.1103/PhysRevA.33.1619 CASWeb of Science®Google Scholar M. R. Spalburg, J. Los, and E. A. Gislason, Chem. Phys. 94, 327 (1985). 10.1016/0301-0104(85)80052-5 CASWeb of Science®Google Scholar G. Parlant and E. A. Gislason, Chem. Phys. 101, 227 (1986). 10.1016/0301-0104(86)85089-3 CASWeb of Science®Google Scholar E. A. Gislason and G. Parlant, Comm. At. Mol. Phys. 19, 157 (1987). CASGoogle Scholar G. Parlant and E. A. Gislason, J. Chem. Phys. 86, 6183 (1987). 10.1063/1.452456 CASWeb of Science®Google Scholar E. A. Gislason, G. Parlant, P. Archirel, and M. Sizun, Faraday Discuss. Chem. Soc. 84, 325 (1987). 10.1039/DC9878400325 CASWeb of Science®Google Scholar G. Parlant and E. A. Gislason, J. Chem. Phys. 88, 1633 (1988). 10.1063/1.454142 CASWeb of Science®Google Scholar G. Parlant and E. A. Gislason, J. Chem. Phys. 91, 5359 (1989). 10.1063/1.457584 CASWeb of Science®Google Scholar (a) M. Sizun, D. Grimbert, and V. Sidis, J. Phys. Chem. 94, 5674 (1990); 10.1021/j100378a015 CASWeb of Science®Google Scholar (b) M. Sizun, D. Grimbert, and V. Sidis (to be published). Google Scholar G. Parlant, P. Archirel, and E. A. Gislason, J. Chem. Phys. 92, 1211 (1990). 10.1063/1.458129 CASWeb of Science®Google Scholar D. Grimbert, B. Lassier-Govers, and V. Sidis, Chem. Phys. 124, 187 (1988). 10.1016/0301-0104(88)87149-0 CASWeb of Science®Google Scholar G. Henri, M. Lavollée, G. Parlant, and P. Archirel (unpublished). Google Scholar G. Henri, M. Lavollée, O. Dutuit, J. B. Ozenne, P. M. Guyon, and E. A. Gislason, J. Chem. Phys. 88, 6381 (1988). 10.1063/1.454475 CASWeb of Science®Google Scholar E. A. Gislason and G. Parlant, J. Chem. Phys. 94, 6598 (1991). 10.1063/1.460287 CASWeb of Science®Google Scholar V. Sidis, J. Phys. Chem. 93, 8128 (1989). 10.1021/j100362a003 CASWeb of Science®Google Scholar V. Sidis, and D. P. DeBruijn, Chem. Phys. 85, 201 (1984). 10.1016/0301-0104(84)85033-8 CASWeb of Science®Google Scholar V. Sidis and M. Courbin-Gaussorgues, Chem. Phys. 111, 285 (1987). 10.1016/0301-0104(87)80141-6 CASWeb of Science®Google Scholar V. Sidis, D. Grimbert, and C. Courbin-Gaussorgues, in Invited Papers of the XV ICPEAC, edited by H. B. Gilbody, W. R. Newell, F. H. Read, and A. C. H. Smith, North-Holland, Amsterdam, 1988, p. 485. Google Scholar J. P. Gauyacq and V. Sidis, Europhys. Lett. 10, 225 (1989). 10.1209/0295-5075/10/3/007 CASWeb of Science®Google Scholar D. G. Truhlar and D. A. Dixon in Atom-Molecule Collision Theory: A Guide for the Experimentalist, edited by R. B. Bernstein, Plenum, New York, 1979, p. 595. 10.1007/978-1-4613-2913-8_18 Google Scholar D. G. Truhlar and J. T. Muckerman, Atom-Molecule Collision Theory: A Guide for the Experimentalist, edited by R. B. Bernstein, Plenum, New York, 1979, p. 505. 10.1007/978-1-4613-2913-8_16 Google Scholar J. R. Stine and J. T. Muckerman, J. Phys. Chem. 91, 459 (1987). 10.1021/j100286a040 CASWeb of Science®Google Scholar S. Chapman, in this volume. Google Scholar J. R. Stine and J. T. Muckerman, J. Chem. Phys. 65, 3975 (1976). 10.1063/1.432892 CASWeb of Science®Google Scholar M. Sizun and E. A. Gislason, J. Chem. Phys. 91, 4603 (1989). 10.1063/1.456750 CASWeb of Science®Google Scholar N. C. Blais and D. G. Truhlar, J. Chem. Phys. 79, 1334 (1983). 10.1063/1.445888 CASWeb of Science®Google Scholar C. W. Eaker, J. Chem. Phys. 87, 4532 (1987). 10.1063/1.452866 CASWeb of Science®Google Scholar G. Parlant and E. A. Gislason, J. Chem. Phys. 91, 4416 (1989). 10.1063/1.456773 CASWeb of Science®Google Scholar G. Parlant and M. H. Alexander, J. Chem. Phys. 92, 2287 (1990). 10.1063/1.457968 CASWeb of Science®Google Scholar J. C. Tully, J. Chem. Phys. 93, 1061 (1990). 10.1063/1.459170 CASWeb of Science®Google Scholar W. R. Gentry, in Atom-Molecules Collision Theory: A Guide for the Experimentalist, edited by R. B. Bernstein, Plenum, New York, 1979, p. 391. 10.1007/978-1-4613-2913-8_12 Google Scholar D. R. Bates and A. R. Holt, Proc. R. Soc. London, Ser. A 292, 168 (1966). 10.1098/rspa.1966.0126 CASWeb of Science®Google Scholar I. J. Berson, Latv. PSR Zinat. Akad. Vestis. Fiz. Teh. Zinat. Ser. N. 4, 47 (1968). Google Scholar R. J. Cross, J. Chem. Phys. 51, 5163 (1969). 10.1063/1.1671916 CASWeb of Science®Google Scholar D. R. Bates and D. S. F. Crothers, Proc. R. Soc. London, Ser. A 315, 465 (1970). 10.1098/rspa.1970.0056 CASWeb of Science®Google Scholar J. B. Delos, W. R. Thorson, and S. K. Knudson, Phys. Rev. A 6, 709 (1972). 10.1103/PhysRevA.6.709 Web of Science®Google Scholar C. Gaussorgues, C. Le Sech, F. Masnou-Seeuws, R. McCarroll, and A. Riera, J. Phys. B 8, 239 (1975). 10.1088/0022-3700/8/2/014 CASWeb of Science®Google Scholar K. J. McCann and M. R. Flannery, J. Chem. Phys. 69, 5275 (1978). 10.1063/1.436581 CASWeb of Science®Google Scholar M. S. Child, Molecular Collision Theory, Academic Press, London, 1974. Google Scholar T. H. Dunning Jr. and L. B. Harding, in Theory of Chemical Reaction Dynamics, edited by M. Baer, CRC Press, Boca Raton, FL, 1985, Vol. 1, p. 1. Google Scholar P. J. Kuntz, in Theory of Chemical Reaction Dynamics, edited by M. Baer, CRC Press, Boca Raton, FL, 1985, Vol. 1, p. 71. Google Scholar B. H. Lengsfield and D. R. Yarkony, in this volume. Google Scholar M. Born and J. R. Oppenheimer, Ann. Phys. 84, 457 (1927). 10.1002/andp.19273892002 CASGoogle Scholar V. Sidis, in this volume. Google Scholar E. E. Nikitin, M. Y. Ovchinnikova, and D. V. Shalashilin, Chem. Phys. 111, 313 (1987). 10.1016/0301-0104(87)80143-X CASWeb of Science®Google Scholar N. F. Mott and H. S. W. Massey, The Theory of Atomic Collisions, Clarendon Press, Oxford, 1965, Chap. XIV. Google Scholar R. J. Cross, J. Chem. Phys. 50, 1036 (1969). 10.1063/1.1671089 CASWeb of Science®Google Scholar E. A. Gislason and D. R. Herschbach, J. Chem. Phys. 64, 2133 (1976). 10.1063/1.432436 CASWeb of Science®Google Scholar G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University, London, 1966, p. 158. Google Scholar M. A. Wartell and R. J. Cross, J. Chem. Phys. 55, 4983 (1971). 10.1063/1.1675610 CASWeb of Science®Google Scholar J. R. Stallcop, J. Chem. Phys. 62, 690 (1975). 10.1063/1.430472 CASWeb of Science®Google Scholar H. Krüger and R. Schinke, J. Chem. Phys. 66, 5087 (1977). 10.1063/1.433764 Web of Science®Google Scholar R. Schinke, Chem. Phys. 24, 379 (1977). 10.1016/0301-0104(77)85098-2 CASWeb of Science®Google Scholar E. A. Gislason, Chem. Phys. Lett. 42, 315 (1976). 10.1016/0009-2614(76)80372-7 CASWeb of Science®Google Scholar R. J. Cross, J. Chem. Phys. 52, 5703 (1970). 10.1063/1.1672848 CASWeb of Science®Google Scholar D. Grimbert, M. Sizun, and V. Sidis, J. Chem. Phys. 93, 7530 (1990). 10.1063/1.459383 CASWeb of Science®Google Scholar M. R. Spalburg, M. G. M. Vervaat, A. W. Kleyn, and J. Los, Chem. Phys. 99, 1 (1985). 10.1016/0301-0104(85)80105-1 CASWeb of Science®Google Scholar See J. Tellinghuisen, Adv. Chem. Phys. 60, 299 (1985), and references therein. CASGoogle Scholar W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, New York, 1986. Google Scholar I. P. Hamilton and J. C. Light, J. Chem. Phys. 84, 306 (1986); and references therein. 10.1063/1.450139 CASWeb of Science®Google Scholar G. C. Schatz, Rev. Mod. Phys. 61, 669 (1989). 10.1103/RevModPhys.61.669 CASWeb of Science®Google Scholar M. R. Spalburg, J. Los, and V. Sidis, Chem. Phys. Lett. 96, 14 (1983). 10.1016/0009-2614(83)80107-9 CASWeb of Science®Google Scholar U. C. Klomp, M. R. Spalburg, and J. Los, Chem. Phys. 83, 33 (1984). 10.1016/0301-0104(84)85218-0 CASWeb of Science®Google Scholar J. B. H. Stedeford and J. B. Hasted, Proc. Roy. Soc. (London) A 227, 466 (1955). 10.1098/rspa.1955.0024 CASWeb of Science®Google Scholar D. W. Koopman, Phys. Rev. 154, 79 (1967). 10.1103/PhysRev.154.79 CASWeb of Science®Google Scholar T. F. Moran and J. R. Roberts, J. Chem. Phys. 49, 3411 (1968). 10.1063/1.1670615 CASWeb of Science®Google Scholar H. C. Hayden and R. C. Amme, Phys. Rev. 172, 104 (1968). 10.1103/PhysRev.172.104 CASWeb of Science®Google Scholar C. J. Latimer, R. Browning, and H. B. Gilbody, J. Phys. B 2, 1055 (1969). 10.1088/0022-3700/2/10/307 Web of Science®Google Scholar H. L. Rothwell, B. VanZyl, and R. C. Amme, J. Chem. Phys. 61, 3851 (1974). 10.1063/1.1682575 CASWeb of Science®Google Scholar F. M. Campbell, R. Browning, and C. J. Latimer, J. Phys. B 14, 3493 (1981). 10.1088/0022-3700/14/18/021 CASWeb of Science®Google Scholar T. Baer, P. T. Murray, and L. Squires, J. Chem. Phys. 68, 4901 (1978). 10.1063/1.435645 CASWeb of Science®Google Scholar R. F. Borkman and M. J. Cobb, J. Chem. Phys. 74, 2920 (1981). 10.1063/1.441412 CASWeb of Science®Google Scholar S. K. Cole, T. Baer, P. M. Guyon, and T. R. Govers, Chem. Phys. Lett. 109, 285 (1984). 10.1016/0009-2614(84)85736-X CASWeb of Science®Google Scholar C. F. Barnett, J. A. Ray, E. Ricci, M. I. Wilker, E. W. McDaniel, E. W. Thomas, and H. B. Gilbody, Atomic Data for Controlled Fusion Research, Oak Ridge National Laboratory Report 5206 (1977). 10.2172/7112109 Google Scholar R. W. Nicholls, J. Phys. B 1, 1192 (1968). 10.1088/0022-3700/1/6/325 Web of Science®Google Scholar P. J. Kuntz and A. C. Roach, J. Chem. Soc. Faraday Trans. II 68, 259 (1972). 10.1039/f29726800259 CASWeb of Science®Google Scholar H. B. Gilbody and J. B. Hasted, Proc. Roy. Soc. (London) A 238, 334 (1957). 10.1098/rspa.1957.0004 CASWeb of Science®Google Scholar R. C. Amme and J. F. McIlwain, J. Chem. Phys. 45, 1224 (1966). 10.1063/1.1727741 CASWeb of Science®Google Scholar C. J. Latimer, J. Phys. B 10, 515 (1977). 10.1088/0022-3700/10/3/020 CASWeb of Science®Google Scholar T. Kato, K. Tanaka, and I. Koyano, J. Chem. Phys. 77, 834 (1982). 10.1063/1.443899 CASWeb of Science®Google Scholar T. R. Govers, P. M. Guyon, T. Baer, K. Cole, H. Fröhlich, and M. Lavollée, Chem. Phys. 87, 373 (1984). 10.1016/0301-0104(84)85118-6 CASWeb of Science®Google Scholar (a) C. L. Liao, R. Xu, and C. Y. Ng, J. Chem. Phys. 85, 7136 (1986); 10.1063/1.451347 CASWeb of Science®Google Scholar (b) J. D. Shao, Y. G. Li, G. D. Flesch, and C. Y. Ng, J. Chem. Phys. 86, 170 (1987). 10.1063/1.452607 CASWeb of Science®Google Scholar T. Kato, K. Tanaka, and I. Koyano, J. Chem. Phys. 77, 337 (1982). 10.1063/1.443610 CASWeb of Science®Google Scholar (a) C. L. Liao, R. Xu, and C. Y. Ng, J. Chem. Phys. 84, 1948 (1986); Google Scholar (b) C. L. Liao, J. D. Shao, R. Xu, G. D. Flesch, Y. G. Li, and C. Y. Ng, J. Chem. Phys. 85, 3874 (1986). 10.1063/1.450908 CASWeb of Science®Google Scholar B. G. Lindsay and C. J. Latimer, J. Phys. B 21, 1617 (1988). 10.1088/0953-4075/21/9/019 CASWeb of Science®Google Scholar R. E. Olson, F. T. Smith, and E. Bauer, Appl. Opt. 10, 1848 (1971). 10.1364/AO.10.001848 CASPubMedWeb of Science®Google Scholar F. Rebentrost, in Theoretical Chemistry: Advances and Perspectives, edited by D. Henderson, Academic, New York, 1981, Vol. 6B, p. 1. Google Scholar S. N. Ghosh and W. F. Sheridan, J. Chem. Phys. 26, 480 (1957). 10.1063/1.1743330 CASWeb of Science®Google Scholar J. C. Abbe and J. P. Adloff, Bull. Soc. Chim. Fr. 1964, 1212. Google Scholar R. C. Amme and H. C. Hayden, J. Chem. Phys. 42, 2011 (1965). 10.1063/1.1696238 CASWeb of Science®Google Scholar (a) J. B. Homer, R. S. Lehrle, J. C. Robb, and D. W. Thomas, Trans. Faraday Soc. 62, 619 (1966); 10.1039/tf9666200619 CASWeb of Science®Google Scholar (b) Adv. Mass Spectrosc. 3, 415 (1966). CASGoogle Scholar R. S. Lehrle, J. E. Parker, J. C. Robb, and J. Scarborough, Int. J. Mass Spectrosc. Ion Phys. 1, 455 (1968). 10.1016/0020-7381(68)85022-3 CASGoogle Scholar D. L. Smith and L. Kevan, J. Am. Chem. Soc. 93, 2113 (1971). 10.1021/ja00738a004 Web of Science®Google Scholar A. Rosenberg, H. Bregman-Reisler, and S. Amiel, Int. J. Mass Spectrosc. Ion Phys. 11, 433 (1973). 10.1016/0020-7381(73)80072-5 CASGoogle Scholar E. W. Kaiser, A. Crowe, and W. E. Falconer, J. Chem. Phys. 61, 2720 (1974). 10.1063/1.1682405 CASWeb of Science®Google Scholar C. L. Liao, C. X. Liao, and C. Y. Ng, J. Chem. Phys. 82, 5489 (1985). 10.1063/1.448584 CASWeb of Science®Google Scholar P. M. Guyon, cited in Ref. 54. Google Scholar D. L. King and D. W. Setser, Ann. Rev. Phys. Chem. 27, 407 (1976). 10.1146/annurev.pc.27.100176.002203 CASWeb of Science®Google Scholar J. D. Shao, Y. G. Li, G. D. Flesch, and C. Y. Ng, Chem. Phys. Lett. 132, 58 (1986). 10.1016/0009-2614(86)80694-7 CASWeb of Science®Google Scholar T. Nakamura, N. Kobayashi, and Y. Kaneko, J. Phys. Soc. Jpn. 55, 3831 (1986). 10.1143/JPSJ.55.3831 CASWeb of Science®Google Scholar K. Birkinshaw, A. Shukla, S. Howard, and J. H. Futrell, Chem. Phys. 113, 149 (1987). 10.1016/0301-0104(87)80227-6 CASWeb of Science®Google Scholar V. G. Anicich and W. T. Huntress, Ap. J. Suppl. 62, 553 (1986). 10.1086/191151 CASWeb of Science®Google Scholar N. Kobayashi, J. Phys. Soc. Jpn. 36, 259 (1974). 10.1143/JPSJ.36.259 CASWeb of Science®Google Scholar I. Dotan and W. Lindinger, J. Chem. Phys. 76, 4972 (1982). 10.1063/1.442843 CASWeb of Science®Google Scholar R. Marx, G. Mauclaire, and R. Derai, Int. J. Mass Spec. Ion Phys. 47, 155 (1983). 10.1016/0020-7381(83)87159-9 CASWeb of Science®Google Scholar R. Marx, in Ionic Processes in the Gas Phase, edited by M. A. Almoster Ferreira, Reidel, Boston, 1984, p. 67. 10.1007/978-94-009-7248-3_5 Google Scholar J. Danon and R. Marx, Chem. Phys. 68, 255 (1982). 10.1016/0301-0104(82)87032-8 CASWeb of Science®Google Scholar G. H. Lin, J. Maier, and S. R. Leone, J. Chem. Phys. 82, 5527 (1985). 10.1063/1.448588 CASWeb of Science®Google Scholar C. E. Hamilton, V. M. Bierbaum, and S. R. Leone, J. Chem. Phys. 83, 2284 (1985). 10.1063/1.449320 CASWeb of Science®Google Scholar E. A. Gislason and E. E. Ferguson, J. Chem. Phys. 87, 6474 (1987). 10.1063/1.453429 CASWeb of Science®Google Scholar J. Baker and A. D. Buckingham, J. Chem. Soc. Faraday Trans. II 83, 1609 (1987). 10.1039/F29878301609 CASWeb of Science®Google Scholar K. Norwood, J. H. Guo, G. Luo, and C. Y. Ng, Chem. Phys. 129, 109 (1989). 10.1016/0301-0104(89)80023-0 CASWeb of Science®Google Scholar E. E. Ferguson, J. Phys. Chem. 90, 731 (1986). 10.1021/j100277a008 CASWeb of Science®Google Scholar E. A. Gislason, J. Chem. Phys. 58, 3702 (1973). 10.1063/1.1679721 CASWeb of Science®Google Scholar R. E. Olson, Phys. Rev. A 6, 1822 (1972). 10.1103/PhysRevA.6.1822 CASWeb of Science®Google Scholar D. P. DeBruijn, J. Neuteboom, and J. Los, Chem. Phys. 85, 233 (1984). 10.1016/0301-0104(84)85035-1 CASWeb of Science®Google Scholar F. Von Busch and G. H. Dunn, Phys. Rev. A 5, 1726 (1972). 10.1103/PhysRevA.5.1726 CASWeb of Science®Google Scholar J. H. Futrell (companion volume). Google Scholar G. Niedner-Schatteburg and J. P. Toennies (companion volume). Google Scholar M. Noll and J. P. Toennies, J. Chem. Phys. 85, 3313 (1986). 10.1063/1.450952 CASWeb of Science®Google Scholar D. Dhuicq, J. C. Brenot, and V. Sidis, J. Phys. B 18, 1395 (1985). 10.1088/0022-3700/18/7/019 CASWeb of Science®Google Scholar G. Parlant, M. Schröder, and S. Goursaud, Chem. Phys. 75, 175 (1983). 10.1016/0301-0104(83)85018-6 CASWeb of Science®Google Scholar E. A. Gislason and E. M. Goldfield, Phys. Rev. A 25, 2002 (1982). 10.1103/PhysRevA.25.2002 CASWeb of Science®Google Scholar D. M. Sonnenfroh and S. R. Leone, J. Chem. Phys. 90, 1677 (1989). 10.1063/1.456673 CASWeb of Science®Google Scholar W. Lindinger, F. Howorka, P. Lukac, S. Kuhn, H. Villinger, E. Alge, and H. Ramler, Phys. Rev. A 23, 2319 (1981). 10.1103/PhysRevA.23.2319 CASWeb of Science®Google Scholar C. Rebrion, B. R. Rowe, and J. B. Marquette, J. Chem. Phys. 91, 6142 (1989). 10.1063/1.457433 CASWeb of Science®Google Scholar M. Sizun, E. A. Gislason, and G. Parlant, Chem. Phys. 107, 311 (1986). 10.1016/0301-0104(86)85010-8 CASWeb of Science®Google Scholar J. T. Muckerman, R. D. Gilbert, and G. D. Billing, J. Chem. Phys. 88, 4779 (1988). 10.1063/1.454724 CASWeb of Science®Google Scholar G. D. Billing and J. T. Muckerman, J. Chem. Phys. 91, 6830 (1989). 10.1063/1.457352 CASWeb of Science®Google Scholar Citing Literature Advances in Chemical Physics: State‐Selected and State‐To‐State Ion‐Molecule Reaction Dynamics, Part 2, Theory, Volume 82 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX