Capítulo de livro Revisado por pares

Glacial to Interglacial Changes in Atmospheric Carbon Dioxide: The Critical Role of Ocean Surface Water in High Latitudes

2011; American Geophysical Union; Linguagem: Inglês

10.1029/gm032p0163

ISSN

2328-8779

Autores

J. R. Toggweiler, Jorge L. Sarmiento,

Tópico(s)

Marine and coastal ecosystems

Resumo

Glacial to Interglacial Changes in Atmospheric Carbon Dioxide: The Critical Role of Ocean Surface Water in High Latitudes J. R. Toggweiler, J. R. Toggweiler Geophysical Fluid Dynamics Program, Princeton University, Princeton, New Jersey 08542Search for more papers by this authorJ. L. Sarmiento, J. L. Sarmiento Geophysical Fluid Dynamics Program, Princeton University, Princeton, New Jersey 08542Search for more papers by this author J. R. Toggweiler, J. R. Toggweiler Geophysical Fluid Dynamics Program, Princeton University, Princeton, New Jersey 08542Search for more papers by this authorJ. L. Sarmiento, J. L. Sarmiento Geophysical Fluid Dynamics Program, Princeton University, Princeton, New Jersey 08542Search for more papers by this author Book Editor(s):E.T. Sundquist, E.T. SundquistSearch for more papers by this authorW.S. Broecker, W.S. BroeckerSearch for more papers by this author First published: 01 January 1985 https://doi.org/10.1029/GM032p0163Citations: 85Book Series:Geophysical Monograph Series AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary Recent measurements of the CO2 content of air bubbles trapped in glacial ice have shown that the partial pressure of atmospheric CO2 during the last ice age was about 70 ppm lower than during the interglacial. Isotopic measurements on surface- and bottom-dwelling forams living during the ice age have shown that the 13C/12C gradient between the ocean's surface and bottom layers was 25% larger during the last ice age than at present. Broecker (1982) proposed that an increase in the phosphate content of the deep sea could explain these observations. We follow up here on a proposal by Sarmiento and Toggweiler (1984) that glacial to interglacial changes in PCO 2 are related to changes in the nutrient content of high-latitude surface water. We develop a four-box model of the ocean and atmosphere which includes low- and high-latitude surface boxes, an atmosphere, and a deep ocean. In simplest form the model equations show that the CO2 content of high-latitude surface water is directly connected to the huge reservoir of CO2 in deep water through the nutrient content of high-latitude surface water. The relationship between the CO2 content of low latitude surface water and the deep sea is more indirect and depends to a large extent on transport of CO2 through the atmosphere from high latitudes. We illustrate how the 14C content of the atmosphere and that of high-latitude surface water constrain model solutions for the present ocean and how ice age 13C observations constrain ice age parameters. We propose that the low ice age PCO 2 can be produced by a reduction in local exchange between high-latitude surface water and deep water. The model requires that the current exchange rate of about 50 Sv be reduced to about 10 Sv. We review evidence in the geologic record for widespread changes in deep convection around Antarctica about 14,000 years ago which are synchronous with the change in atmospheric PCO 2. References M. Andree, et al., Accelerator radiocarbon ages on foramimifera separated from deep-sea sediments, Geophys. Monogr. Ser., 32. Google Scholar E. A. Boyle, L. D. Keigwin, Deep circulation of the N. Atlantic over the last 200,000 yrs: Geochemical evidence, Science, 218, 748– 787, 1982. 10.1126/science.218.4574.784 Web of Science®Google Scholar W. S. Broecker, A revised estimate of the radiocarbon age of North Atlantic Deep Water, J. Geophys. Res., 84, 3218– 3226, 1979. 10.1029/JC084iC06p03218 CASWeb of Science®Google Scholar W. S. Broecker, Ocean chemistry during glacial time, Geochim. Cosmochim. Acta, 46, 1689– 1705, 1982. 10.1016/0016-7037(82)90110-7 CASWeb of Science®Google Scholar W. S. Broecker, T.-H. Peng, Gas exchange rates between air and sea, Tellus, 26, 21– 35, 1974. 10.1111/j.2153-3490.1974.tb01948.x CASWeb of Science®Google Scholar W. S. Broecker, T.-H. Peng, Tracers in the Sea, Eldigio Press, Lamont-Doherty Geological Observatory, Palisades, N.Y., 1982. Google Scholar W. S. Broecker, T.-H. Peng, R. E. Engh, Modelling the carbon system, Radiocarbon, 22, 565– 598, 1980. 10.1017/S0033822200009966 CASWeb of Science®Google Scholar W. S. Broecker, T. Takahashi, H. J. Simpson, T.-H. Peng, Fate of fossil fuel carbon dioxide and the global carbon budget, Science, 206, 409– 418, 1979. 10.1126/science.206.4417.409 CASPubMedWeb of Science®Google Scholar K. Bryan, F. G. Komro, S. Manabe, M. J. Spelman, Transient climate response to increasing atmospheric carbon dioxide, Science, 215, 56– 58, 1982. 10.1126/science.215.4528.56 CASPubMedWeb of Science®Google Scholar L. H. Burckle, D. Robinson, D. Cooke, Reappraisal of sea Ice distribution in Atlantic and Pacific sectors of the Southern Ocean at 18,000 yr BP, Nature, 299, 435– 437, 1982. 10.1038/299435a0 Web of Science®Google Scholar D. W. Cooke, J. D. Hays, Estimates of Antarctic Ocean seasonal sea-ice cover during glacial intervals, Antarctic Geoscience, Int. Union of Geol. Sci.Ser. B, 4, C. Craddock, 1017– 1025, University of Wisconsin Press, Madison, 1982. Google Scholar H. Craig, Abyssal carbon and radiocarbon in the Pacific, J. Geophys. Res., 74, 5491– 5506, 1969. 10.1029/JC074i023p05491 CASWeb of Science®Google Scholar F. K. Ennever, and M. B. McElroy, Changes in atmospheric C02: Factors regulating the glacial to Interglacial transition, Geophys. Monogr. Ser., 32. Google Scholar A. L. Gordon, Oceanography of Antarctic waters, Antarctic Oceanology I, Antarct. Res. Ser., 15, J. L. Reid, 169– 203, AGU, Washington, D.C., 1971. 10.1029/AR015p0169 Google Scholar A. L. Gordon, General ocean circulation, in Numerical Models of Ocean Circulation, pp. 39– 53, National Academy of Sciences, Washington, D.C., 1975. Web of Science®Google Scholar A. L. Gordon, Deep Antarctic convection west of Maud Rise, J. Phys. Oceanogr., 8, 600– 612, 1978. 10.1175/1520-0485(1978)008 2.0.CO;2 Web of Science®Google Scholar A. L. Gordon, Seasonality of Southern Ocean sea ice, J. Geophys. Res., 86, 4193– 4197, 1981. 10.1029/JC086iC05p04193 Web of Science®Google Scholar A. L. Gordon, Weddell Deep Water variability, J. Mar. Res., 40, suppl. 199– 217, 1982. Google Scholar A. L. Gordon, C. T. A. Chen, W. G. Metcalf, Winter mixed layer entralnment of Weddell Deep Water, J. Geophys. Res., 89, 637– 640, 1984. 10.1029/JC089iC01p00637 Web of Science®Google Scholar J. D. Hays, J. A. Lozano, N. Shackleton, G. Irving, Reconstruction of the Atlantic and western Indian Ocean sectors of the 18,000 B.P. Antarctic Ocean, Investigation of Late Quaternary Paleoceanography and Paleoclimatology, Mem., 145, R. M. Cline, J. D. Hays, 337– 372, Geological Society of America, Boulder, Colo., 1976a. 10.1130/MEM145-p337 Google Scholar J. D. Hays, J. Imbrie, N. J. Shackleton, Variations in the earth's orbit: Pacemaker of the ice ages, Science, 194, 1121– 1132, 1976b. 10.1126/science.194.4270.1121 CASPubMedWeb of Science®Google Scholar S. Honjo, Material fluxes and modes of sedimentation in the mesopelagic and bathypelagic zones, J. Mar. Res., 38, 53– 97, 1980. CASWeb of Science®Google Scholar C. D. Keeling, B. Bolin, The simultaneous use of chemical tracers in oceanic studies, Tellus, 20, 17– 54, 1968. 10.1111/j.2153-3490.1968.tb00348.x CASWeb of Science®Google Scholar R. S. Keir, Reduction of thermohaline circulation during deglaciation: The effect on atmospheric radiocarbon and CO2 , Earth Planet. Sci. Lett., 64, 445– 456, 1983. 10.1016/0012-821X(83)90105-X CASWeb of Science®Google Scholar G. A. Knauer, J. H. Martin, K. W. Bruland, Fluxes of particulate carbon, nitrogen, and phosphorus in the upper water column of the northeast Pacific, Deep Sea Res., 26A, 97– 108, 1979. 10.1016/0198-0149(79)90089-X Web of Science®Google Scholar F. Knox, M. McElroy, Changes in atmospheric CO2: Influence of marine biota at high latitudes, J. Geophys. Res., 89, 4629– 4637, 1984. 10.1029/JD089iD03p04629 CASWeb of Science®Google Scholar P. Kroopnick, Correlations between δ13C and σCO2 In surface waters and atmospheric CO2 , Earth Planet. Sci. Lett., 22, 397– 403, 1974. 10.1016/0012-821X(74)90150-2 CASWeb of Science®Google Scholar S. Levitus, Climatological Atlas of the World Ocean, NOAA Prof. Pap. , 13, U.S. Government Printing Office, Washington, D.C., 1982. Web of Science®Google Scholar Y.-H. Li, T. Takahashi, W. S. Broecker, Degree of saturation of CaCO3 in the oceans, J. Geophys. Res., 74, 5507– 5525, 1969. 10.1029/JC074i023p05507 CASWeb of Science®Google Scholar S. Manabe, R. J. Stouffer, Sensitivity of a global climate model to an increase of CO2 concentration in the atmosphere, J. Geophys. Res., 85, 5529– 5554, 1980. 10.1029/JC085iC10p05529 Web of Science®Google Scholar J. J. Morely, J. D. Hays, Oceanographic conditions associated with high abundances of the radiolarian Cycladophora davisiana, Earth Planet. Sci. Lett., 66, 63– 72, 1983. 10.1016/0012-821X(83)90126-7 Web of Science®Google Scholar A. Neftel, H. Oeschger, J. Schwander, B. Stauffer, R. Zumbrunn, Ice core measurements give atmospheric PCO2 content during the past 40,000 yrs., Nature, 295, 220– 223, 1982. Google Scholar H. Oeschger, J. Beer, U. Siegenthaler, B. Stauffer, W. Dansgaard, C. C. Langway, Late glacial climate history from ice cores, Climate Processes and Climate Sensitivity, Geophys. Monogr. Ser., 29, J. E. Hansen, T. Takahashi, 299– 306, AGU, Washington, D.C., 1984. 10.1029/GM029p0299 Google Scholar T.-H. Peng, W. S. Broecker, G. G. Mathieu, Y.-H. Li, Radon evasion rates in the Atlantic and Pacific oceans as determined during the GEOSECS program, J. Geophys. Res., 84, 7839– 7845, 1979. 10.1029/JC084iC05p02471 Web of Science®Google Scholar A. C. Redfield, B. H. Ketchum, and F. A. Richards, The influence of organisms on the composition of sea water, in The Sea, 2, edited by M. N. Hill, pp. 26– 77, Wiley-Interscience, New York, 1962. Google Scholar W. F. Ruddimen, A. Mclntyre, The mode and mechanism of the last deglaciation: Oceanic evidence, Quat. Res., 16, 125– 134, 1981. 10.1016/0033-5894(81)90040-5 Web of Science®Google Scholar J. L. Sarmiento, J. R. Toggweiler, A new model for the role of the oceans in determining atmospheric PCO2 , Nature, 308, 621– 624, 1984. 10.1038/308621a0 CASWeb of Science®Google Scholar N. J. Shackleton, Carbon-13 in Uvigerina: Tropical rainforest history and the equatorial Pacific carbonate dissolution cycles, The Fate of Fossil Fuel CO2 in the Oceans, N. Anderson, A. Malahoff, 401– 428, Plenum, New York, 1977. 10.1007/978-1-4899-5016-1_22 Google Scholar N. J. Shackleton, J. Imbrie, M. A. Hall, Oxygen and carbon isotope record of east Pacific core V19–130: Implications for the formation of deep water in the late Pleistocene North Atlantic, Earth Planet. Sci. Lett., 65, 233– 244, 1983a. 10.1016/0012-821X(83)90162-0 CASWeb of Science®Google Scholar N. J. Shackleton, M. a. Hall, J. Line, Gang Shuxi, Carbon isotope data in core VI9–30 confirm reduced carbon dioxide concentration in the ice age atmosphere, Nature, 306, 319– 322, 1983b. 10.1038/306319a0 CASWeb of Science®Google Scholar U. Siegenthaler, T. Wenk, Rapid atmospheric CO2 variations and ocean circulation, Nature, 308, 624– 626, 1984. 10.1038/308624a0 CASWeb of Science®Google Scholar U. Siegenthaler, K. O. Munnich, 13C/12C fractionation during CO2 transfer from air to sea, Carbon Cycle Modelling, SCOPE, 16, B. Bolin, 249– 257, John Wiley, New York, 1981. Google Scholar B. Stauffer, H. Hofer, H. Oeschger, J. Schwander, and U. Siegenthaler, Atmospheric CO2 concentration during the last glaciation, Proc. Symposium on Ice and Climate Modelling. Annals of Glaciology, in press, 1984. Google Scholar S. S. Streeter, N. J. Shackleton, Paleocirculation of the deep North Atlantic: 150,000 year record of benthic foraminifera and oxygen-18, Science, 203, 168– 171, 1979. 10.1126/science.203.4376.168 CASPubMedWeb of Science®Google Scholar M. Stuiver, Evidence for the variation of atmospheric 14Ccontent in the late Quaternary, The Late Cenozoic Glacial Ages, K. Turekian, 57– 70, Yale University Press, New Haven, Conn., 1971. Google Scholar M. Stuiver, H. G. Ostlund, T. A. McConnaughey, GEOSECS Atlantic and Pacific distribution, Carbon Cycle Modelling, SCOPE, 16, B. Bolin, 201– 221, John Wiley, New York, 1981. Google Scholar H. U. Sverdrup, M. W. Johnson, R. H. Fleming, The Oceans, Prentice-Hall, Englewood Cliffs, N.J., 1942. Google Scholar T. Takahashi, W. S. Broecker, A. E. Bainbridge, R. F. Weiss, Carbonate chemistry of the Atlantic, Pacific, and Indian oceans: The results of the GEOSECS expeditions, 1972–1978, Tech. Rep. 1, CU-1-80, Lamont-Doherty Geol. Obs. Palisades, N.Y. 1980. Google Scholar T. Takahashi, W. S. Broecker, S. Langer, Redfield ratio based on chemical data from isopycnal surfaces, J. Geophys. Res., 1984. Google Scholar E. Vincent, J. S. Killingley, W. H. Berger, Stable isotopes in benthic foraminifera from Ontong-Java Plateau, box cores ERDC 112 and 123, Palaeogeogr. Palaeoclimatol. Palaeoecol., 33, 221– 230, 1981. 10.1016/0031-0182(81)90040-7 Web of Science®Google Scholar J. J. Walsh, Vertical distribution of Antarctic phytoplankton, II, A comparison of phytoplankton standing crops in the Southern Ocean with that of the Florida Strait, Limnol. Oceanogr., 14, 86– 94, 1969. 10.4319/lo.1969.14.1.0086 Web of Science®Google Scholar B. A. Warren, Deep circulation of the world ocean, Evolution of Physical Oceanography, Scientific Surveys in Honor of Henry Stommel, B. Warren, C. Wunsch, 6– 41, MIT Press, Cambridge, Mass., 1981. Google Scholar CRC Handbook of Chemistry and Physics, 60 R. C. Weast, M. J. Astle, F-198– CRC Press, Boca Raton, Fla., 1979. Google Scholar R. F. Weiss, H. G. Ostlund, H. Craig, Geochemical studies of the Weddell Sea, Deep Sea Res., 26, 1093– 1120, 1979. 10.1016/0198-0149(79)90059-1 CASWeb of Science®Google Scholar T. Wenk, and U. Siegenthaler, The high-latitude ocean as a control of atmospheric CO2 , Geophys. Monogr. Ser., 32. Google Scholar Citing Literature The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, Volume 32 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX