Prediction of the disinfection and oxidation efficiency of full-scale ozone reactors
2003; UWA Publishing; Volume: 52; Issue: 4 Linguagem: Inglês
10.2166/aqua.2003.0026
ISSN1365-2087
AutoresHervé Gallard, Urs von Gunten, Hans‐Peter Kaiser,
Tópico(s)Water Treatment and Disinfection
ResumoResearch Article| June 01 2003 Prediction of the disinfection and oxidation efficiency of full-scale ozone reactors Hervé Gallard; Hervé Gallard 1Swiss Federal Institute for Environmental Science and Technology, EAWAG, CH-8600 Dübendorf, Switzerland Search for other works by this author on: This Site PubMed Google Scholar U. von Gunten; U. von Gunten 1Swiss Federal Institute for Environmental Science and Technology, EAWAG, CH-8600 Dübendorf, Switzerland Tel: +41-1-823 5270 Fax: +41-1-823 5210; E-mail: vongunten@eawag.ch Search for other works by this author on: This Site PubMed Google Scholar H. P. Kaiser H. P. Kaiser 2Wasserversorgung Zürich, Hardhof 9, CH-8023 Zürich, Switzerland *Current address: Laboratoire de Chimie de l'Eau et de l'Environnement, UMR CNRS 6008, 40 avenue du recteur Pineau, 86022 Poitiers, France Search for other works by this author on: This Site PubMed Google Scholar Journal of Water Supply: Research and Technology-Aqua (2003) 52 (4): 277–290. https://doi.org/10.2166/aqua.2003.0026 Views Icon Views Article contents Figures & tables Video Audio Supplementary Data Share Icon Share Twitter LinkedIn Tools Icon Tools Cite Icon Cite Permissions Search Site Search nav search search input Search input auto suggest search filter All ContentAll JournalsThis Journal Search Advanced Search Citation Hervé Gallard, U. von Gunten, H. P. Kaiser; Prediction of the disinfection and oxidation efficiency of full-scale ozone reactors. Journal of Water Supply: Research and Technology-Aqua 1 June 2003; 52 (4): 277–290. doi: https://doi.org/10.2166/aqua.2003.0026 Download citation file: Ris (Zotero) Reference Manager EasyBib Bookends Mendeley Papers EndNote RefWorks BibTex The efficiency of a two-step ozonation with regard to disinfection and oxidation of micropollutants was assessed for a river-water treatment plant (Limmat River, Zürich, Switzerland). The assessment was based on laboratory experiments to estimate transient ozone and OH radical concentrations coupled with hydraulic modelling of the ozone reactors. The laboratory experiments were performed for various temperatures, ozone dosages and pretreatments to mimic the full-scale treatment. The hydraulics were determined by a conservative tracer test. The kinetic data for disinfection and oxidation were taken from the literature. The inactivation of microorganisms (Cryptosporidium parvum oocysts, Bacillus subtilis spores, Giardia lamblia cysts and polio virus) was more critical at low temperature (5°C) than at high temperature (20°C). For Cryptosporidium parvum oocysts it was calculated to be less than 1 log for the two ozonation steps, and an overall ozone dose of 1.5 mg/l (5°C). For the same microorganism it was >3.5-log inactivation at 20°C. For other microorganisms, the calculated inactivation was ≥2 log (5°C) with B. subtilis spores being the most resistant. The oxidation of micropollutants was much less affected by variations in the temperature. The fraction of oxidation increased in the following order: between 15 and 25% of tetrachloroethene, 15 and 25% of methyl tertiary butyl ether, 30 and 40% of atrazine, 80 and 90% of p-xylene and between 97 and 100% of trimethylbenzene were oxidized. For the oxidation of methyl tertiary butyl ether, the formation of degradation products was modelled in the pre-ozonation step. For all investigated treatment conditions the overall bromate formation was ≤2.5 μg/l. disinfection, modelling of ozone contactors, oxidation kinetics, ozonation, micropollutants This content is only available as a PDF. © IWA Publishing 2003 You do not currently have access to this content.
Referência(s)