Plasmonics of multifaceted metallic nanoparticles, field enhancement, and TERS
2014; Wiley; Volume: 252; Issue: 1 Linguagem: Inglês
10.1002/pssb.201350416
ISSN1521-3951
AutoresCecilia Noguez, Carlos J. Villagómez, A. L. González,
Tópico(s)Protein Interaction Studies and Fluorescence Analysis
Resumophysica status solidi (b)Volume 252, Issue 1 p. 56-71 Feature Article Plasmonics of multifaceted metallic nanoparticles, field enhancement, and TERS Cecilia Noguez, Corresponding Author Cecilia Noguez Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, México D.F. 01000, MéxicoCorresponding authors: e-mail [email protected], Phone: +52 55 56225106, Fax: +52 55 56161535Search for more papers by this authorCarlos J. Villagómez, Carlos J. Villagómez Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, México D.F. 01000, MéxicoSearch for more papers by this authorAna L. González, Ana L. González Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J48, 72570 Puebla, MéxicoSearch for more papers by this author Cecilia Noguez, Corresponding Author Cecilia Noguez Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, México D.F. 01000, MéxicoCorresponding authors: e-mail [email protected], Phone: +52 55 56225106, Fax: +52 55 56161535Search for more papers by this authorCarlos J. Villagómez, Carlos J. Villagómez Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, México D.F. 01000, MéxicoSearch for more papers by this authorAna L. González, Ana L. González Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J48, 72570 Puebla, MéxicoSearch for more papers by this author First published: 20 June 2014 https://doi.org/10.1002/pssb.201350416Citations: 9Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Abstract Metal nanoparticles (NPs) exhibit remarkable physical and chemical properties that are morphology dependent. Particular interest has been paid to the optical response of NPs because their surface plasmon excitations strongly couple with external light. At the nanoscale, this physical property translates to new phenomena because these surface plasmon resonances are localized and consequently they enhance the near electromagnetic field. The latter can be controlled for increasing significantly the sensitivity of optical spectroscopies. In this feature article, we discuss surface plasmons in metal NPs, their localization, the electromagnetic field enhancement of such plasmons, and their application in the so-called tip-enhanced Raman spectroscopy (TERS). Tip-enhanced Raman spectroscopy model using plasmonics. References 1 S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, Nature Mater. 2, 229– 232 (2003). 2 R. Jin, Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. Mirkin, Nature 425, 487– 490 (2003). 3 H. A. Atwater and A. Polman, Nature Mater. 9, 205– 213 (2010). 4 X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, J. Am. Chem. Soc. 128, 2115– 2120 (2006). 5 J. Z. Zhang and C. Noguez, Plasmonics 3, 127– 150 (2008). 6 J. P. Camden, J. A. Dieringer, J. Zhao, and R. P. Van Duyne, Acc. Chem. Res. 41, 1653– 1661 (2008). 7 C. Noguez, J. Phys. Chem. C 111, 3806– 3819 (2007). 8 A. Hartschuh, M. R. Beversluis, A. Bouhelier, and L. Novotny, Philos. Trans. R. Soc. Lond. A 362, 807– 819 (2004). 9 M. Moskovits, Rev. Mod. Phys. 57, 783– 826 (1985). 10 J. Lakowicz, Plasmonics 1, 5– 33 (2006). 11 J. Steidtner and B. Pettinger, Phys. Rev. Lett. 100, 4 (2008). 12 B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, Phys. Rev. Lett. 92, 096101 (2004). 13 J. Steidtner and B. Pettinger, Phys. Rev. Lett. 100, 236101 (2008). 14 B. Pettinger, P. Schambach, C. J. Villagomez, and N. Scott, Annu. Rev. Phys. Chem. 63, 379– 399 (2012). 15 L. J. Sherry, R. C. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, Nano Lett. 6, 2060– 2065 (2006). 16 A. L. González and C. Noguez, J. Comput. Theor. Nanosci. 4, 231– 238 (2007). 17 A. L. González and C. Noguez, Phys. Status Solidi C 4(11), 4118– 4126 (2007). 18 J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, W. Yin, B. Ren, Z. L. Wang, and Z. Q. Tian, Nature 464, 392– 395 (2010). 19 I. Chourpa, F. H. Lei, P. Dubois, M. Manfait, and G. D. Sockalingum, Chem. Soc. Rev. 37(5), 993– 1000 (2008). 20 C. Noguez and A. L. González, in: Complex-Shaped Metal Nanoparticles: Bottom-Up Syntheses and Applications, edited by T. K. Sau and A. L. Rogach (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2012), chap. 11, pp. 361– 393. 21 A. L. González, G. P. Ortiz, G. Rodriguez-Gattorno, and C. Noguez, J. Phys. Chem. B 109, 17512– 17517 (2005). 22 C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley and Sons, Inc., New York, 1983). 23 C. Noguez, Opt. Mater. 27(7), 1204– 1211 (2005). 24 E. A. Coronado and G. C. Schatz, J. Chem. Phys. 119, 3926– 3934 (2003). 25 P. B. Johnson and R. W. Christy, Phys. Rev. B 6(12), 4370– 4379 (1972). 26 C. E. Román-Velázquez, C. Noguez, C. Villarreal, and R. Esquivel-Sirvent, Phys. Rev. A 69(4), 042109 (2004). 27 U. Kreibig, J. Phys. F, Met. Phys. 4, 999– 1014 (1974). 28 A. L. González, J. A. Reyes-Esqueda, and C. Noguez, J. Phys. Chem. C 112, 7356– 7362 (2008). 29 G. Mie, Ann. Phys.(Leipzig) 330, 377– 445 (1908). 30 I. O. Sosa, C. Noguez, and R. G. Barrera, J. Phys. Chem. B 107(26), 6269– 6275 (2003). 31 R. Fuchs, Phys. Rev. B 11(4), 1732– 1740 (1975). 32 C. E. Román-Velázquez and C. Noguez, J. Chem. Phys. 134(4), 044116 (2011). 33 S. Asano and G. Yamamoto, Appl. Opt. 14, 29– 49 (1975). 34 A. C. Lind and J. M. Greenberg, J. Appl. Phys. 37, 3195– 3203 (1966). 35 A. L. Aden and M. Kerker, J. Appl. Phys. 22, 1242– 1246 (1951). 36 C. E. Román-Velázquez, C. Noguez, and J. Z. Zhang, J. Phys. Chem. A 113(16), 4068– 4074 (2009). 37 M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurement and Applications (Academic Press, San Diego, 2000). 38 T. K. Sau and C. J. Murphy, J. Am. Chem. Soc. 126(28), 8648– 8649 (2004). 39 C. H. Cui and S. H. Yu, in: Complex-Shaped Metal Nanoparticles: Bottom-Up Syntheses and Applications, edited by T. K. Sau and A. L. Rogach (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2012), chap. 2, pp. 91– 116. 40 A. L. Gonzalez, C. Noguez, and A. S. Barnard, J. Phys. Chem. C 116(26), 14170– 14175 (2012). 41 A. L. Gonzalez, C. Noguez, and A. S. Barnard, J. Mater. Chem. C 1, 3150– 3157 (2013). 42 A. L. González, C. Noguez, J. Beránek, and A. S. Barnard, J. Phys. Chem. C 118(17), 9128– 9136 (2014). 43 P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, Acc. Chem. Res. 41, 1578 (2008). 44 C. J. Orendorff, T. K. Sau, and C. J. Murphy, Small 2, 636– 639 (2006). 45 B. Devika Chithrani, A. A. Ghazani, and W. C. W. Chan, Nano Lett. 6, 662 (2006). 46 J. Q. Hu, Z. P. Wang, and J. H. Li, Sensors 7(12), 3299 (2007). 47 T. A. El-Brolossy, T. Abdallah, M. B. Mohamed, S. Abdallah, K. Easawi, S. Negm, and H. Talaat, Eur. Phys. J. Spec. Top. 153(1), 361– 364 (2008). 48 M. Grzelczak, J. Pérez-Juste, P. Mulvaney, and L. M. Liz-Marzán, Chem. Soc. Rev. 37, 1783 (2008). 49 P. A. Buffat, M. Flueli, R. Spycher, P. Stadelmann, and J. P. Borel, Faraday Discuss. 92, 173– 187 (1991). 50 L. D. Marks, Rep. Prog. Phys. 57(6), 603 (1994). 51 T. Martin, Phys. Rep. 273(4), 199– 241 (1996). 52 J. O. Bovin and J. O. Malm, Z. Phys. D 19, 293– 298 (1991). 53 R. L. Whetten, J. T. Khoury, M. M. Alvarez, S. Murthy, I. Vezmar, Z. L. Wang, P. W. Stephens, C. L. Cleveland, W. D. Luedtke, and U. Landman, Adv. Mater. 8(5), 428– 433 (1996). 54 B. Pauwels, G. Van Tendeloo, W. Bouwen, L. Theil Kuhn, P. Lievens, H. Lei, and M. Hou, Phys. Rev. B 62(15), 10383– 10393 (2000). 55 K. Page, T. Proffen, H. Terrones, M. Terrones, L. Lee, Y. Yang, S. Stemmer, R. Seshadri, and A. K. Cheetham, Chem. Phys. Lett. 393(4–6), 385– 388 (2004). 56 N. Goubet, C. Yan, D. Polli, H. Portales, I. Arfaoui, G. Cerullo, and M. P. Pileni, Nano Lett. 13(2), 504– 508 (2013). 57 A. Pinto, A. R. Pennisi, G. Faraci, G. D'Agostino, S. Mobilio, and F. Boscherini, Phys. Rev. B 51(8), 5315– 5321 (1995). 58 A. S. Barnard, N. P. Young, A. I. Kirkland, M. A. van Huis, and H. Xu, ACS Nano 3(6), 1431– 1436 (2009). 59 A. S. Barnard, J. Mater. Chem. 16, 813– 815 (2006). 60 F. Kim, J. H. Song, and P. Yang, J. Am. Chem. Soc. 124, 14316 (2002). 61 Y. Niidome, K. Nishioka, H. Kawasaki, and S. Yamada, Chem. Commun., 2376 (2003). 62 C. A. Foss, G. L. Hornyak, J. A. Stockert, and C. R. Martin, J. Phys. Chem. 96, 7497 (1992). 63 Y. Y. Yu, S. S. Chang, C. L. Lee, and C. R. C. Wang, J. Phys. Chem. 101, 6661 (1997). 64 G. Canizal, J. A. Ascencio, J. Gardea-Torresday, and M. José Yacamán, J. Nanopart. Res. 3, 475 (2001). 65 F. K. Liu, Y. C. Chang, F. H. Ko, and T. C. Chu, Mater. Lett. 58, 373– 377 (2003). 66 Y. J. Zhu and X. L. Hu, Chem. Lett. 32, 1140– 1141 (2003). 67 M. Tsuji, M. Hashimoto, Y. Nishizawa, and T. Tsuji, Mater. Lett. 58, 2326– 2330 (2004). 68 N. R. Jana, L. Gearheart, and C. J. Murphy, J. Phys. Chem. B 105, 4065– 4067 (2001). 69 C. J. Murphy and N. R. Jana, Adv. Mater. 14, 80– 82 (2002). 70 C. J. Johnson, E. Dujardin, S. A. Davis, C. Murphy, and S. Mann, J. Mater. Chem. 12, 1765 (2002). 71 N. R. Jana, L. A. Gearheart, S. O. Obare, C. J. Johnson, K. J. Edler, S. Mann, and C. J. Murphy, J. Mater. Chem. 12, 2909 (2002). 72 C. J. Murphy, T. K. Sau, A. Gole, and C. J. Orendorff, MRS Bull. 30, 349 (2005). 73 L. Gou and C. J. Murphy, Chem. Mater. 17, 3668 (2005). 74 S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. C. Wang, Langmiur 15, 701 (1999). 75 N. R. Jana, L. Gearheart, and C. J. Murphy, J. Phys. Chem. B 105, 4065 (2001). 76 H. Y. Wu, H. C. Chu, T. J. Kuo, C. L. Kuo, and M. H. Huang, Chem. Mater. 17, 6447 (2005). 77 H. J. Park, C. S. Ah, W. J. Kim, I. S. Choi, K. P. Lee, and W. S. Yan, J. Vac. Sci. Technol. A 24, 1323 (2006). 78 P. L. Gai and M. A. Harmer, Nano Lett. 2, 771 (2002). 79 M. Hu, P. Hillyard, G. V. Hartland, T. Kosel, J. Perez-Juste, and P. Mulvaney, Nano Lett. 4, 2493 (2004). 80 J. L. Elechiguerra, J. Reyes-Gasga, and M. José-Yacamán, J. Mater. Chem. 16, 3906 (2006). 81 E. Hao and G. C. Schatz, J. Chem. Phys. 120(1), 357– 366 (2004). 82 M. Culha, Appl. Spectrosc. 67, 355– 364 (2013). 83 Y. L. Wang and J. Irudayaraj, Philos. Trans. R. Soc. B, Biol. Sci. 368, 10 (2013). 84 Y. S. Yamamoto, M. Ishikawa, Y. Ozaki, and T. Itoh, Front. Phys. 9, 31– 46 (2014). 85 Q. M. Dong, Y. M. Yang, P. Liang, X. Y. Li, and L. Wang, Spectrosc. Spectral Anal. 33, 1547– 1552 (2013). 86 R. Thomas, K. Bakeev, M. Claybourn, and R. Chimenti, Spectroscopy 28, 36– 43 (2013). 87 M. Vendrell, K. K. Maiti, K. Dhaliwal, and Y. T. Chang, Trends Biotechnol. 31, 249– 257 (2013). 88 K. B. Crozier, W. Q. Zhu, D. X. Wang, S. Y. Lin, M. D. Best, and J. P. Camden, IEEE J. Sel. Top. Quantum Electron. 20, 11 (2014). 89 E. P. Hoppmann, W. W. Yu, and I. M. White, Methods 63, 219– 224 (2013). 90 Q. L. Li, B. W. Li, and Y. Q. Wang, RSC Adv. 3, 13015– 13026 (2013). 91 A. Tao, P. Sinsermsuksakul, and P. Yang, Angew. Chem. Int. Ed. 45, 4597– 4601 (2006). 92 A. M. Angulo, C. Noguez, and G. C. Schatz, J. Phys. Chem. Lett. 2, 1978– 1983 (2011). 93 L. C. Davis, Phys. Rev. B 14(12), 5523– 5525 (1976). 94 M. Micic, N. Klymyshyn, Y. D. Suh, and H. P. Lu, J. Phys. Chem. B 107, 1574– 1584 (2003). 95 R. M. Roth, N. C. Panoiu, M. M. Adams, and R. M. Osgood, Opt. Express 14, 2921– 2931 (2006). 96 M. Sukharev and T. Seideman, J. Phys. Chem. A 113, 7508– 7513 (2009). 97 Z. Yang, J. Aizpurua, and H. Xu, J. Raman Spectrosc. 40, 1343– 1348 (2009). 98 A. L. Demming, F. Festy, and D. Richards, J. Chem. Phys. 122, 184716 (2005). 99 W. Zhang, X. Cui, and O. J. Martin, J. Raman Spectrosc. 40, 1338– 1342 (2009). 100 G. Binning, H. Rohrer, C. Gerber, and E. Weibel, Phys. Rev. Lett. 49, 57– 61 (1982). 101 S. Loth, S. Baumann, C. P. Lutz, D. M. Eigler, and A. J. Heinrich, Science 335, 196– 199 (2012). 102 S. Loth, C. P. Lutz, and A. J. Heinrich, New J. Phys. 12, 26 (2010). 103 R. Wiesendanger, Rev. Mod. Phys. 81, 1495– 1550 (2009). 104 L. Gross, F. Mohn, N. Moll, B. Schuler, A. Criado, E. Guitián, D. Peña, A. Gourdon, G. Meyer, Science 337, 1326– 1329 (2012). 105 D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, S. R. Phillpot, J. Appl. Phys. 93, 793– 818 (2003). 106 R. C. Dunn, Chem. Rev. 99, 2891 (1999). 107 J. K. Gimzewski and C. Joachim, Science 283, 1683– 1688 (1999). 108 C. J. Villagomez, T. Sasaki, J. M. Tour, and L. Grill, J. Am. Chem. Soc. 132, 16848– 16854 (2010). 109 C. J. Villagomez, T. Zambelli, S. Gauthier, A. Gourdon, C. Barthes, S. Stojkovic, and C. Joachim, Chem. Phys. Lett. 450, 107– 111 (2007). 110 C. J. Villagomez, T. Zambelli, S. Gauthier, A. Gourdon, S. Stojkovic, and C. Joachim, Surf. Sci. 603, 1526– 1532 (2009). 111 L. Gross, F. Mohn, N. Moll, P. Liljeroth, and G. Meyer, Science 325, 1110– 1114 (2009). 112 S. W. Hla, J. Vac. Sci. Technol. B 23, 1351– 1360 (2005). 113 L. Gross, Nature Chem. 3, 273– 278 (2011). 114 I. Swart, L. Gross, and P. Liljeroth, Chem. Commun. 47, 9011– 9023 (2011). 115 B. C. Stipe, M. A. Rezaei, and W. Ho, Science 280, 1732– 1735 (1998). 116 K. F. Domke and B. Pettinger, ChemPhysChem 11, 1365– 1373 (2010). 117 B. Pettinger, Mol. Phys. 108, 2039– 2059 (2010). 118 E. Bailo and V. Deckert, Chem. Soc. Rev. 37, 921– 930 (2008). 119 T. Schmid, L. Opilik, C. Blum, and R. Zenobi, Angew. Chem. Int. Ed. 52, 5940– 5954 (2013). 120 A. Hartschuh, Angew. Chem. Int. Ed. 47, 8178– 8191 (2008). 121 E. A. Pozzi, M. D. Sonntag, N. Jiang, J. M. Klingsporn, M. C. Hersam, and R. P. Van Duyne, ACS Nano 7, 885– 888 (2013). 122 P. T. Chiang, J. Mielke, J. Godoy, J. M. Guerrero, L. B. Alemany, C. J. Villagómez, A. Saywell, L. Grill, and J. M. Tour, ACS Nano 6, 592– 597 (2012). 123 N. Jiang, E. T. Foley, J. M. Klingsporn, M. D. Sonntag, N. A. Valley, J. A. Dieringer, T. Seideman, G. C. Schatz, M. C. Hersam, and R. P. Van Duyne, Nano Lett. 12, 5061– 5067 (2012). 124 R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, Nature 498, 82– 86 (2013). 125 F. J. Giessibl, Rev. Mod. Phys. 75, 949– 983 (2003). 126 R. Garcia and R. Perez, Surf. Sci. Rep. 47, 197– 301 (2002). 127 F. J. Giessibl, Phys. Rev. B 56, 16010– 16015 (1997). 128 A. Bettac, J. Koeble, K. Winkler, B. Uder, M. Maier, and A. Feltz, Nanotechnology 20, 6 (2009). 129 F. Mohn, L. Gross, N. Moll, and G. Meyer, Nature Nano- technol. 7, 227– 231 (2012). 130 S. Hembacher, F. J. Giessibl, and J. Mannhart, Appl. Surf. Sci. 188, 445– 449 (2002). 131 N. Peica, S. Rohrig, A. Rudiger, K. Brose, C. Thomsen, and J. Maultzsch, Phys. Status Solidi B 246, 2708– 2712 (2009). 132 Z. L. Zhang, X. R. Tian, H. R. Zheng, H. X. Xu, and M. T. Sun, Plasmonics 8, 523– 527 (2013). 133 M. T. Sun, Z. L. Zhang, H. R. Zheng, and H. X. Xu, Sci. Rep. 2, 4 (2012). 134 M. T. Sun, Z. L. Zhang, Z. H. Kim, H. R. Zheng, and H. X. Xu, Chemistry –Eur. J. 19, 14958– 14962 (2013). 135 Z. L. Zhang, L. Chen, M. T. Sun, P. P. Ruan, H. R. Zheng, and H. X. Xu, Nanoscale 5, 3249– 3252 (2013). 136 Z. L. Zhang, M. T. Sun, P. P. Ruan, H. R. Zheng, and H. X. Xu, Nanoscale 5, 4151– 4155 (2013). 137 M. T. Sun, Y. R. Fang, Z. Y. Zhang, and H. X. Xu, Phys. Rev. E 87, 5 (2013). 138 M. T. Sun, Z. L. Zhang, L. Chen, and H. X. Xu, Adv. Opt. Mater. 1, 449– 455 (2013). 139 M. T. Sun, Z. L. Zhang, L. Chen, S. X. Sheng, and H. X. Xu, Adv. Opt. Mater. 2, 74– 80 (2014). 140 J. M. Mativetsky, S. A. Burke, R. Hoffmann, Y. Sun, and P. Grutter, Nanotechnology 15, S40– S43 (2004). 141 C. G. Artur, R. Miller, M. Meyer, E. C. Le Ru, and P. G. Etchegoin, Phys. Chem. Chem. Phys. 14, 3219– 3225 (2012). 142 P. Schambach, Dissertationen online der Freien Universität Berlin, No. 000000095340 (2013), pp. 1– 130. Citing Literature Volume252, Issue1January 2015Pages 56-71 ReferencesRelatedInformation
Referência(s)