
Different utilization of plant sources by the omnivores jundiá catfish (Rhamdia quelen) and Nile tilapia (Oreochromis niloticus)
2011; Wiley; Volume: 18; Issue: 1 Linguagem: Inglês
10.1111/j.1365-2095.2011.00877.x
ISSN1365-2095
AutoresAna Paula Oeda Rodrigues, Maria do Carmo Gominho-Rosa, Eduardo Cargnin-Ferreira, Alícia de Francisco, Débora Machado Fracalossi,
Tópico(s)Fish Biology and Ecology Studies
ResumoAquaculture NutritionVolume 18, Issue 1 p. 65-72 Different utilization of plant sources by the omnivores jundiá catfish (Rhamdia quelen) and Nile tilapia (Oreochromis niloticus) A.P.O. RODRIGUES, A.P.O. RODRIGUES Brazilian Agricultural Research Corporation, Embrapa Fisheries and Aquaculture, Palmas, TO, BrazilSearch for more papers by this authorM.D.C. GOMINHO-ROSA, M.D.C. GOMINHO-ROSA Research Group in Fisheries Resources and Limnology, Western Paraná State University, Toledo, PR, BrasilSearch for more papers by this authorE. CARGNIN-FERREIRA, E. CARGNIN-FERREIRA Laboratory of Histological Markers, Federal Institute of Education, Science and Technology of Santa Catarina, Florianópolis, SC, BrasilSearch for more papers by this authorA. De FRANCISCO, A. De FRANCISCO Food Science and Technology Department, Agrarian Sciences Centre, Federal University of Santa Catarina, Florianópolis, SC, BrazilSearch for more papers by this authorD.M. FRACALOSSI, D.M. FRACALOSSI Aquaculture Department, Agrarian Sciences Centre, Federal University of Santa Catarina, Florianópolis, SC, BrazilSearch for more papers by this author A.P.O. RODRIGUES, A.P.O. RODRIGUES Brazilian Agricultural Research Corporation, Embrapa Fisheries and Aquaculture, Palmas, TO, BrazilSearch for more papers by this authorM.D.C. GOMINHO-ROSA, M.D.C. GOMINHO-ROSA Research Group in Fisheries Resources and Limnology, Western Paraná State University, Toledo, PR, BrasilSearch for more papers by this authorE. CARGNIN-FERREIRA, E. CARGNIN-FERREIRA Laboratory of Histological Markers, Federal Institute of Education, Science and Technology of Santa Catarina, Florianópolis, SC, BrasilSearch for more papers by this authorA. De FRANCISCO, A. De FRANCISCO Food Science and Technology Department, Agrarian Sciences Centre, Federal University of Santa Catarina, Florianópolis, SC, BrazilSearch for more papers by this authorD.M. FRACALOSSI, D.M. FRACALOSSI Aquaculture Department, Agrarian Sciences Centre, Federal University of Santa Catarina, Florianópolis, SC, BrazilSearch for more papers by this author First published: 29 June 2011 https://doi.org/10.1111/j.1365-2095.2011.00877.xCitations: 37 Débora Machado Fracalossi, Aquaculture Department, Agrarian Sciences Centre, Federal University of Santa Catarina, Rodovia Admar Gonzaga, 1346, CEP 88034-001, Florianópolis, SC, Brazil. E-mail: [email protected] Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Abstract Plant sources are receiving special attention as feedstuffs in aquafeeds because of fish meal and oil shortage. However, studies about the effects of dietary fibre in fish are scarce. The inclusion of plant ingredients containing different levels of dietary fibre – broken rice (BR), ground corn (GC), wheat bran (WB), citrus pulp (CP) and soybean hulls (SH) were evaluated for the omnivores jundiá catfish and Nile tilapia. Tilapia is a typical omnivore with long intestines, whereas jundiá has short intestines and no pyloric ceca. Fibrous sources (CP, WB and SH) were less digestible for both species than the starchy ones (BR and GC). However, jundiá presented less ability to utilize the starch and protein from plant sources than tilapia. Growth of tilapia followed plant sources digestibility but no significant differences were detected for jundiá, probably because of its slower growth rate. Muscle layer was thicker in the distal intestine of jundiá fed CP diet, which possibly indicates an adaptation to propel the large volume of viscous digesta along the intestine. Therefore, despite its lower ability to utilize starchy plant sources, jundiá showed an adaptive capacity to utilize fibrous diets, which is in agreement with its omnivorous feeding habit. References Amirkolaie, A.K., Leenhouwers, J.I., Verreth, J.A.J. & Schrama, J.W. (2005) Type of dietary fibre (soluble versus insoluble) influences digestion, faeces characteristics and faecal waste production in Nile tilapia (Oreochromis niloticus L.). Aquacult. Res., 36, 1157– 1166. Anderson, J., Jackson, A.J., Matty, A.J. & Capper, B.S. (1984) Effects of dietary carbohydrate and fibre on the tilapia Oreochromis niloticus (Linn.). Aquaculture, 37, 303– 314. Association of Official Analytical Chemists – AOAC. (1999) Official Methods of Analysis, 16th edn. AOAC, Washington, DC, USA. Bach Knudsen, K.E. (2001) The nutritional significance of ‘dietary fibre’ analysis. Anim. Feed Sci. Technol., 90, 3– 20. Bremer Neto, H., Graner, C.A.F., Pezzato, L.E., Padovani, C.R. & Cantelmo, O.A. (2003) Diminuição do teor de óxido de crômio (III) usado como marcador externo. Rev. Bras. Zootec., 32, 249– 255. Bromley, P.J. & Adkins, T.C. (1983) The influence of cellulose filler on feeding, growth and utilization of protein and energy in rainbow trout, Salmo gairdnerii Richardson. J. Fish Biol., 24, 235– 244. Brown, R.C., Kelleher, J. & Losowsky, M.S. (1979) The effect of pectin on the structure and function of the rat small intestine. Br. J. Nutr., 42, 357– 365. Buhler, D.R. & Halver, J.E. (1961) Nutrition of salmonoid fishes. IX. Carbohydrate requirements of Chinook salmon. J. Nutr., 74, 307– 317. Bureau, D.P., Harris, A.M. & Cho, C.Y. (1999) Apparent digestibility of rendered animal protein ingredients for rainbow trout (Oncorhynchus mykiss). Aquaculture, 180, 345– 358. Cargnin-Ferreira, E. & Sarasquete, C. (2008) Histofisiología de Moluscos Bivalvos Marinos. CSIC, Madrid, Spain. Cho, C.Y. & Slinger, S.J. (1979) Apparent digestibility measurement in feedstuffs for rainbow trout. In: Proc. World Symp. on Finfish Nutrition and Fishfeed Technology ( J. Halver & K. Tiews eds.), Vol. 2, pp. 239– 247. Heenemann, Berlim. Dias, J., Huelvan, C., Dinis, M.T. & Métailler, R. (1998) Influence of dietary bulk agents (silica, cellulose and a natural zeolite) on protein digestibility, growth, feed intake and feed transit time in European seabass (Dicentrarchus labrax) juveniles. Aquat. Living Resour., 11, 219– 226. Fracalossi, D.M., Meyer, G., Santamaria, F.M., Weingartner, M. & Zaniboni-Filho, E. (2004) Desempenho do jundiá, Rhamdia quelen, e do dourado, Salminus brasiliensis, em viveiros de terra na região sul do Brasil. Acta Sci. Anim. Sci., 26, 345– 352. Fracalossi, D.M., Moro, G.V. & Yasumaru, F.A. (2007) Jundiá catfish farming in Southern Brazil. Glob. Aquac. Advocate, 10, 68– 70. Hemre, G.I., Mommsen, T.P. & Krogdahl, Å. (2002) Carbohydrates in fish nutrition: effects on growth, glucose metabolism and hepatic enzymes. Aquacult. Nutr., 8, 175– 194. Hetland, H., Choct, M. & Svihus, B. (2004) Role of insoluble non-starch polysaccharides in poultry nutrition. Worlds Poult. Sci. J., 60, 415– 422. Hilton, J.W., Atkinson, J.L. & Slinger, S.J. (1983) Effect of increased dietary fiber on the growth of rainbow trout (Salmo gairdneri). Can. J. Fish. Aquat. Sci., 40, 81– 85. Iji, P.A. (1999) The impact of cereal non-starch polysaccharides on intestinal development and function in broiler chickens. Worlds Poult. Sci. J., 55, 375– 387. Kihara, M. & Sakata, T. (1997) Fermentation of dietary carbohydrates to short-chain fatty acids by gut microbes and its influence on intestinal morphology of a detritivorous teleost tilapia (Oreochromis niloticus). Comp Biochem. Physiol. A, 118, 1201– 1207. Kramer, D.L. & Bryant, M.J. (1995) Intestine length in the fishes of a tropical stream: 2. Relationships to diet – the long and short of a convoluted issue. Environ. Biol. Fishes, 42, 129– 141. Krogdahl, Å., Hemre, G.-I. & Mommsen, T.P. (2005) Carbohydrates in fish nutrition: digestion and absorption in postlarval stages. Aquacult. Nutr., 11, 103– 122. Leenhouwers, J.I., Adjei-Boateng, D., Verreth, J.A.J. & Schrama, J.W. (2006) Digesta viscosity, nutrient digestibility and organ weights in African catfish (Clarias gariepinus) fed diets supplemented with different levels of a soluble non-starch polysaccharide. Aquacult. Nutr., 12, 111– 116. Leenhouwers, J.I., Pellikaan, W.F., Huizing, H.F.A., Coolen, R.O.M., Verreth, J.A.J. & Schrama, J.W. (2008) Fermentability of carbohydrates in an in vitro batch culture method using inocula from Nile tilapia (Oreochromis niloticus) and European sea bass (Dicentrarchus labrax). Aquacult. Nutr., 14, 523– 532. Maina, J.G., Beames, R.M., Higgs, D., Mbugua, P.N., Iwama, G. & Kisia, S.M. (2002) Digestibility and feeding value of some feed ingredients fed to tilapia Oreochromis niloticus (L.). Aquacult. Res., 33, 853– 862. McDougall, G.J., Morrison, I.M., Derek Stewart, D. & Hillman, J.R. (1996) Plant cell walls as dietary fibre: range, structure, processing and function. J. Sci. Food Agric., 70, 133– 150. McGoogan, B.B. & Reigh, R.C. (1996) Apparent digestibility of selected ingredients in red drum (Sciaenops ocellatus) diets. Aquaculture, 141, 233– 244. Meyer, G. & Fracalossi, D.M. (2004) Protein requirement of jundiá fingerlings, Rhamdia quelen, at two dietary energy concentrations. Aquaculture, 240, 331– 343. Montes-Girao, P.J. & Fracalossi, D.M. (2006) Dietary lysine requirement as basis to estimate the essential dietary amino acid profile for jundiá, Rhamdia quelen. J. World Aquac. Soc., 37, 388– 396. Moro, G.V., Camilo, R.Y., Moraes, G. & Fracalossi, D.M. (2010) Dietary non-protein energy sources: growth, digestive enzyme activities and nutrient utilization by the catfish jundiá, Rhamdia quelen. Aquacult. Res., 41, 394– 400. Mwachireya, S.A., Beames, R.M., Higgs, D.A. & Dosanjh, B.S. (1999) Digestibility of canola protein products derived from the physical, enzymatic and chemical processing of commercial canola meal in rainbow trout Oncorhynchus mykiss (Walbaum) held in fresh water. Aquacult. Nutr., 5, 73– 82. Naylor, R.L., Hardy, R.W., Bureau, D.P. et al. (2009) Feeding aquaculture in an era of finite resources. Proc. Natl. Acad. Sci., 106, 15103– 15110. Oliveira Filho, P.R.C. & Fracalossi, D.M. (2006) Coeficientes de digestibilidade aparente de ingredientes para juvenis de jundiá. Rev. Bras. Zootec., 35, 1581– 1587. Øvrum Hansen, J. & Storebakken, T. (2007) Effects of dietary cellulose level on pellet quality and nutrient digestibilities in rainbow trout (Oncorhynchus mykiss). Aquaculture, 272, 458– 465. Paulini, I., Mehta, T. & Hargis, A. (1987) Intestinal structural changes in African green monkeys after long term psyllium or cellulose feeding. J. Nutr., 117, 253– 266. Rust, M.B. (2002) Nutritional physiology. In: Fish Nutrition ( J.E. Halver & R.W. Hardy eds.), 3rd edn. pp. 393– 412. Academic Press, California. Stone, D.A.J. (2003) Dietary carbohydrate utilization by fish. Rev. Fish. Sci., 11, 337– 369. Tatsumi, H., Katano, H. & Ikeda, T. (2007) Kinetics analysis of glucoamylase-catalyzed hydrolysis of starch granules from various botanical sources. Biosci. Biotechnol. Biochem., 71, 946– 950. Tengjaroenkul, B., Smith, B.J., Caceci, T. & Smith, S.A. (2000) Distribution of intestinal enzyme activities along the intestinal tract of cultured Nile tilapia, Oreochromis niloticus L. Aquaculture, 182, 317– 327. Webster, C.D. & Lim, C.E. (2002) Nutrient requirements and feeding of finfish for aquaculture. CABI Publishing, Wallingford Oxon, UK. Wu, X.-Y., Liu, Y.-L., Tian, L.-X., Mai, K.-S. & Yang, H.-J. (2007) Utilization of different raw and pre-gelatinized starch sources by juvenile yellowfin seabream Sparus latus. Aquacult. Nutr., 13, 389– 396. Citing Literature Volume18, Issue1February 2012Pages 65-72 ReferencesRelatedInformation
Referência(s)