Artigo Revisado por pares

After all: Xenoturbella is an acoelomorph!

2010; Wiley; Volume: 12; Issue: 3 Linguagem: Catalão

10.1111/j.1525-142x.2010.00408.x

ISSN

1525-142X

Autores

Claus Nielsen,

Tópico(s)

Evolution and Paleontology Studies

Resumo

Evolution & DevelopmentVolume 12, Issue 3 p. 241-243 After all: Xenoturbella is an acoelomorph! Claus Nielsen, Claus Nielsen Zoological Museum, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, DenmarkSearch for more papers by this author Claus Nielsen, Claus Nielsen Zoological Museum, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, DenmarkSearch for more papers by this author First published: 11 May 2010 https://doi.org/10.1111/j.1525-142X.2010.00408.xCitations: 14 (email: [email protected]) Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat REFERENCES Aronowicz, J., and Lowe, C. J. 2006. Hox gene expression in the hemichordate Saccoglossus kowalevskii and the evolution of deuterostome nervous system. Integr. Comp. Biol 46: 890–901. 10.1093/icb/icl045 CASPubMedWeb of Science®Google Scholar Bourlat, S. J., et al. 2006. Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida. Nature 444: 85–88. 10.1038/nature05241 CASPubMedWeb of Science®Google Scholar Bourlat, S. J., Nakano, H., Åkerman, M., Telford, M. J., Thorndyke, M. C., and Obst, M. 2008a. Feeding biology of Xenoturbella bocki (phylum Xenoturbellida) revealed by genetic barcoding. Mol. Ecol. Resour. 8: 18–22. 10.1111/j.1471-8286.2007.01959.x CASPubMedWeb of Science®Google Scholar Bourlat, S. J., Nielsen, C., Economou, A. D., and Telford, M. J. 2008b. Testing the new animal phylogeny: a phylum level molecular analysis of the animal kingdom. Mol. Phylogenet. Evol. 49: 23–31. CASPubMedWeb of Science®Google Scholar Bourlat, S. J., Nielsen, C., Lockyer, A. E., Littlewood, D. T. J., and Telford, M. J. 2003. Xenoturbella is a deuterostome that eats molluscs. Nature 424: 925–928. 10.1038/nature01851 CASPubMedWeb of Science®Google Scholar Bourlat, S. J., Rota-Stabelli, O., Lanfear, R., and Telford, M. J. 2009. The mitochondrial genome structure of Xenoturbella bocki (phylum Xenoturbellida) is ancestral within the deuterostomes. BMC Evol. Biol. 9: 107. 10.1186/1471-2148-9-107 CASPubMedWeb of Science®Google Scholar Chiori, R., et al. 2009. Are Hox genes ancestrally involved in axial patterning? Evidence from the hydrozoan Clytia hemisphaerica (Cnidaria). PLoS One 4: e4231. 10.1371/journal.pone.0004231 CASPubMedWeb of Science®Google Scholar Cook, C. E., Smith, M. L., Telford, M. J., Bastianello, A., and Akam, M. 2001. Hox genes and the phylogeny of the arthropods. Curr. Biol. 11: 759–763. 10.1016/S0960-9822(01)00222-6 CASPubMedWeb of Science®Google Scholar Dunn, C. W., et al. 2008. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452: 745–749. 10.1038/nature06614 CASPubMedWeb of Science®Google Scholar Ehlers, U. 1991. Comparative morphology of statocysts in the plathelminthes and the Xenoturbellida. Hydrobiologia 227: 263–271. 10.1007/BF00027611 Web of Science®Google Scholar Ehlers, U., and Sopott-Ehlers, B. 1997. Ultrastructure of the subepidermal musculature of Xenoturbella bocki, the adelphotaxon of the Bilateria. Zoomorphology 117: 71–79. 10.1007/s004350050032 Web of Science®Google Scholar Franzén, Å., and Afzelius, B. A. 1987. The ciliated epidermis of Xenoturbella bocki (Platyhelminthes, Xenoturbellida) with some phylogenetic considerations. Zool. Scr. 16: 9–17. 10.1111/j.1463-6409.1987.tb00046.x Web of Science®Google Scholar Fritsch, G., et al. 2008. PCR survey of Xenoturbella bocki Hox genes. J. Exp. Zool. (Mol. Dev. Evol.) 310: 278–284. 10.1002/jez.b.21208 Web of Science®Google Scholar Fröbius, A. C., Matus, D. Q., and Seaver, E. C. 2008. Genomic organization and expression demonstrate spatial and temporal Hox gene colinearity in the lophotrochozoan Capitella sp. 1. PLoS One 3: e4004. 10.1371/journal.pone.0004004 CASPubMedWeb of Science®Google Scholar Haszprunar, G. 1996. Plathelminthes and Plathelminthomorpha—paraphyletic taxa. J. Zool. Syst. Evol. Res. 34: 41–48. 10.1111/j.1439-0469.1996.tb00808.x Web of Science®Google Scholar Hejnol, A., et al. 2009. Assessing the root of bilaterian animals with scalable phylogenomic methods. Proc. R. Soc. Lond. B 276: 4261–4270. 10.1098/rspb.2009.0896 PubMedWeb of Science®Google Scholar Hejnol, A., and Martindale, M. Q. 2009. Coordinated spatial and temporal expression of Hox genes during embryogenesis in the acoel Convolutriloba longifissura. BMC Biol. 7: 65. 10.1186/1741-7007-7-65 CASPubMedWeb of Science®Google Scholar Holland, L. Z., et al. 2008. The amphioxus genome illuminates vertebrate origins and cephalochordate biology. Genome. Res. 18: 1100–1111. 10.1101/gr.073676.107 CASPubMedWeb of Science®Google Scholar Israelsson, O. 1997. … and molluscan embryogenesis. Nature 390: 32. 10.1038/36246 CASWeb of Science®Google Scholar Israelsson, O. 2007. Ultrastructural aspects of the "statocyst" of Xenoturbella (Deuterostomia) cast doubt on its function as a georeceptor. Tissue Cell 39: 171–177. 10.1016/j.tice.2007.03.002 CASPubMedWeb of Science®Google Scholar Jiménez-Guri, E., Paps, J., García-Fernàndez, J., and Saló, E. 2006. Hox and ParaHox genes in Nemertodermatida, a basal bilaterian clade. Int. J. Dev. Biol. 50: 675–679. 10.1387/ijdb.062167ej CASPubMedWeb of Science®Google Scholar Lundin, K. 1997. Comparative ultrastructure of the epidermal ciliary rootlets and associated structures of the Nemertodermatida and Acoela (Plathelminthes). Zoomorphology 117: 81–92. 10.1007/s004350050033 Web of Science®Google Scholar Lundin, K. 1998. The epidermal ciliary rootlets of Xenoturbella bocki (Xenoturbellida) revisited: new support for a possible kinship with the Acoelomorpha (Platyhelminthes). Zool. Scr. 27: 263–270. Web of Science®Google Scholar Lundin, K 2001. Degenerating epidermal cells in Xenoturbella bocki (phylum uncertain), Nemertodermatida and Acoela (Platyhelminthes). Belg. J. Zool. 131 (suppl.): 153–157. Web of Science®Google Scholar Matus, D. Q., et al. 2006. Broad taxon and gene sampling indicate that chaetognaths are protostomes. Curr. Biol. 16: R575–R576. 10.1016/j.cub.2006.07.017 CASPubMedWeb of Science®Google Scholar Moreno, E., Nadal, M., Baguñà, J., and Martínez, P. 2009. Tracking the origins of the bilaterian Hox patterning system: insights from the aceol flatworm Symsagittifera roscoffensis. Evol. Dev. 11: 574–581. CASWeb of Science®Google Scholar Nielsen, C. 2009a. How did indirect development with planktotrophic larvae evolve? Biol. Bull. 216: 203–215. 10.2307/25548155 PubMedWeb of Science®Google Scholar Nielsen, C. 2009b. Six major steps in animal evolution: are we derived sponge larvae? Evol. Dev. 10: 241–257. PubMedWeb of Science®Google Scholar Norén, M., and Jondelius, U. 1997. Xenoturbella 's molluscan relatives. Nature 390: 31–32. 10.1038/36242 CASWeb of Science®Google Scholar Obst, M., et al (in press). Spermatozoon ultrastructure of Xenoturbella bocki (Westblad 1949). Acta Zool. (Stockholm). Google Scholar Paps, J., and Baguñà, J. 2009. Bilaterian phylogeny: a broad sampling of 13 nuclear genes provides a new Lophotrochozoa phylogeny and supports a paraphyletic basal Acoelomorpha. Mol. Biol. Evol. 26: 2397–2406. CASWeb of Science®Google Scholar Paps, J., Baguñá, J., and Riutort, M. 2009. Lophotrochozoa internal phylogeny: new insights from an up-to-date analysis of nuclear ribosomal genes. Proc. R. Soc. Lond. B 276: 1245–1254. CASPubMedWeb of Science®Google Scholar Pedersen, K. J., and Pedersen, L. R. 1986. Fine structural observations on the extracellular matrix (ECM) of Xenoturbella bocki Westblad, 1949. Acta Zool. (Stockholm) 67: 103–113. 10.1111/j.1463-6395.1986.tb00854.x Web of Science®Google Scholar Pedersen, K. J., and Pedersen, L. R. 1988. Ultrastructural observations on the epidermis of Xenoturbella bocki Westblad, 1949; with a discussion of epidermal cytoplasmic filament systems of invertebrates. Acta Zool. (Stockholm) 69: 231–246. 10.1111/j.1463-6395.1988.tb00920.x Web of Science®Google Scholar Perseke, M., et al. 2007. The mitochondrial DNA of Xenoturbella bocki: genomic architecture and phylogenetic analysis. Theory Biosci. 126: 35–42. CASPubMedWeb of Science®Google Scholar Philippe, H., et al. 2009. Phylogenomics revives traditional views on deep animal relationships. Curr. Biol. 19: 706–712. 10.1016/j.cub.2009.02.052 CASPubMedWeb of Science®Google Scholar Raikova, O. I., Reuter, M., Gustafsson, M. K. S., Maule, A. G., Halton, D. W., and Jondelius, U. 2004a. Basiepithelial nervous system in Nemertoderma westbladi (Nemertodermatida): GYIRFamide immunoreactivity. Zoology 107: 75–86. PubMedWeb of Science®Google Scholar Raikova, O. I., Reuter, M., Gustafsson, M. K. S., Maule, A. G., Halton, D. W., and Jondelius, U. 2004b. Evolution of the nervous system in Paraphanostoma (Acoela). Zool. Scr. 33: 71–88. 10.1111/j.1463-6409.2004.00137.x Web of Science®Google Scholar Raikova, O. I., Reuter, M., Jondelius, U., and Gustafsson, M. K. S. 2000. An immunocytochemical and ultrastructural study of the nervous and muscular systems of Xenoturbella westbladi (Bilateria inc. sed.). Zoomorphology 120: 107–118. 10.1007/s004350000028 Web of Science®Google Scholar Reisinger, E. 1960. Was ist Xenoturbella? Z. Wiss. Zool. 164: 188–198. Google Scholar Rohde, K., Watson, N., and Cannon, L. R. G. 1988. Ultrasrtucture of epidermal cilia od Pseudactinoposthia sp. (Platyhelminthes, Acoela); implications for the phylogenetic status of the Xenoturbellida and Acoelomorpha. J. Submicrosc. Cytol. Pathol. 20: 759–767. Web of Science®Google Scholar Ryan, J. F., et al. 2007. Pre-bilaterian origins of the Hox cluster and the Hox code: evidence from the sea anemone Nematostella vectensis. PLoS One 2: e153. PubMedWeb of Science®Google Scholar Saló, E., et al. 2001. Hox and ParaHox genes in flatworms: characterization and expression. Am. Zool. 41: 652–663. Web of Science®Google Scholar Stach, T., et al. 2005. Nerve cells of Xenoturbella bocki (phylum uncertain) and Harrimania kupfferi (Enteropneusta) are positively immunoreactive to antibodies raised against echinoderm neuropeptides. J. Mar. Biol. Assoc. UK 85: 1519–1524. 10.1017/S0025315405012725 CASWeb of Science®Google Scholar Telford, M., Wise, M. J., and Gowri-Shankar, V. 2005. Consideration of RNA secondary structure significantly improves lokelihood-based estimates of phylogeny: example from the Bilateria. Mol. Biol. Evol. 22: 1129–1136. Google Scholar Westblad, E. 1950. Xenoturbella bocki n.g., n.sp. a peculiar, primitive turbellarian type. Ark. Zool. 1: 11–29. Google Scholar Citing Literature Volume12, Issue3May/June 2010Pages 241-243 ReferencesRelatedInformation

Referência(s)