Outro Revisado por pares

Molecular Mechanics Calculated Conformational Energies of Organic Molecules: A Comparison of Force Fields

1996; Wiley; Linguagem: Inglês

10.1002/9780470125861.ch4

ISSN

1934-5372

Autores

Ingrid Pettersson, Tommy Liljefors,

Tópico(s)

Various Chemistry Research Topics

Resumo

Molecular Mechanics Calculated Conformational Energies of Organic Molecules: A Comparison of Force Fields Ingrid Pettersson, Ingrid Pettersson Department of Medicinal Chemistry, Astra Draco AB, S-221 00 Lund, SwedenSearch for more papers by this authorTommy Liljefors, Tommy Liljefors Department of Medicinal Chemistry, Royal Danish School of Pharmacy, DK-2100 Copenhagen, DenmarkSearch for more papers by this author Ingrid Pettersson, Ingrid Pettersson Department of Medicinal Chemistry, Astra Draco AB, S-221 00 Lund, SwedenSearch for more papers by this authorTommy Liljefors, Tommy Liljefors Department of Medicinal Chemistry, Royal Danish School of Pharmacy, DK-2100 Copenhagen, DenmarkSearch for more papers by this author Book Editor(s):Kenny B. Lipkowitz, Kenny B. LipkowitzSearch for more papers by this authorDonald B. Boyd, Donald B. BoydSearch for more papers by this author First published: 01 January 1996 https://doi.org/10.1002/9780470125861.ch4Citations: 29Book Series:Reviews in Computational Chemistry AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary This chapter contains sections titled: Introduction The Principles of Molecular Mechanics Forms of Potential Energy Functions Comparisons of Calculated Conformational Energies Reproducibility of Comformational Energies Summary and Conclusions References U. Burkert and N. L. Allinger, Molecular Mechanics, ACS Monograph 177, American Chemical Society, Washington, DC, 1982. Google Scholar J. P. Bowen and N. L. Allinger, in Reviews in Computational Chemistry, K. B. Lipkowitz and D. B. Boyd, Eds., VCH Publishers, New York, 1991, Vol. 2, pp. 81–97. Molecular Mechanics: The Art and Science of Parameterization. 10.1002/9780470125793.ch3 Google Scholar N. L. Allinger, Adv. Phys. Org. Chem., 13, 1 (1976). Calculation of Molecular Structure and Energy by Force-Field Methods. 10.1016/S0065-3160(08)60212-9 CASGoogle Scholar D. B. Boyd and K. B. Lipkowitz, J. Chem. Educ., 59, 269 (1982). Molecular Mechanics. The Method and Its Underlying Philosophy. 10.1021/ed059p269 CASWeb of Science®Google Scholar G. L. Siebel and P. A. Kollman, in Comprehensive Medicinal Chemistry, C. Hansch, P. G. Sammes, J. B. Taylor and C. A. Ramsden, Eds., Pergamon Press, Oxford, 1990, Vol. 4, pp. 125–138. Molecular Mechanics and the Modeling of Drug Structures. Google Scholar T. Schlick, in Reviews in Computational Chemistry, K. B. Lipkowitz and D. B. Boyd, Eds., VCH Publishers, New York, 1992, Vol. 3, pp. 1–71. Optimization Methods in Computational Chemistry. 10.1002/9780470125809.ch1 Google Scholar A. R. Leach, in Reviews in Computational Chemistry, K. B. Lipkowitz and D. B. Boyd, Eds., VCH Publishers, New York, 1991, Vol. 2, pp. 1–55. A Survey of Methods for Searching the Conformational Space of Small and Medium-Sized Molecules. 10.1002/9780470125793.ch1 Google Scholar N. L. Allinger, Y. H. Yuh, and J.-H. Lii, J. Am. Chem. Soc. 111, 8551 (1989). Molecular Mechanics. The MM3 Force Field for Hydrocarbons. 1. For the correction of the misprint in this paper regarding the form of the bond stretch term, see Erratum to Chapter 2 of Volume 6 on the World Wide Web, http://chem.iupui.edu/∼boyd/rcc.html. 10.1021/ja00205a001 CASWeb of Science®Google Scholar J.-H. Lii and N. L. Allinger, J. Am. Chem. Soc., 111, 8566 (1989). Molecular Mechanics. The MM3 Force Field for Hydrocarbons. 2. Vibrational Frequencies and Thermodynamics. 10.1021/ja00205a002 CASWeb of Science®Google Scholar J.-H. Lii and N. L. Allinger, J. Am. Chem. Soc., 111, 8576 (1989). Molecular Mechanics. The MM3 Force Field for Hydrocarbons. 3. The van der Waals' Potential and Crystal Data for Aliphatic and Aromatic Hydrocarbons. 10.1021/ja00205a003 CASWeb of Science®Google Scholar F. Mohamadi, N. G. J. Richards, W. C. Guida, R. Liskamp, M. Lipton, C. Caufield, G. Chang, T. Hendrickson, and W. C. Still, J. Comput. Chem., 11, 440 (1990). Macro-Model—An Integrated Software System for Modeling Organic and Bioorganic Molecules Using Molecular Mechanics. [The MacroModel software is available from W. C. Still, Department of Chemistry, Columbia University, New York, NY 10027, U.S.A.] 10.1002/jcc.540110405 CASWeb of Science®Google Scholar Serena Software, P. O. Box 3076, Bloomington, IN 47402, U.S.A. Google Scholar CambridgeSoft, Inc., 875 Massachusetts Avenue, Suite 61, Cambridge, MA 02139, U.S.A. Google Scholar E. K. Davies and N. W. Murrall, Comput. Chem., 13, 149 (1989). How Accurate Does a Force Field Need to Be? [The Chem-X software is available from Chemical Design Ltd., Roundway House, Cromwell Park, Chipping Norton, Oxon, OX7 5SR U.K.] 10.1016/0097-8485(89)80007-5 CASWeb of Science®Google Scholar M. Clark, R. D. Cramer III, and N. van Opdenbosch, J. Comput. Chem., 10, 982 (1989). Validation of the General Purpose TRIPOS 5.2 Force Field. [SYBYL and Alchemy are available from Tripos Associates, 1699 South Hanley Road, Suite 303, St. Louis, MO 63144-2913, U.S.A.] 10.1002/jcc.540100804 CASWeb of Science®Google Scholar B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus, J. Comput. Chem., 4, 187 (1983). CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations. 10.1002/jcc.540040211 CASWeb of Science®Google Scholar F. A. Momany and R. Rone, J. Comput. Chem., 13, 888 (1992). Validation of the General Purpose QUANTA ® 3.2/CHARMm®Force Field. 10.1002/jcc.540130714 CASWeb of Science®Google Scholar S. L. Mayo, B. D. Olafson, and W. A. Goddard III, J. Phys. Chem., 94, 8897 (1990). DREIDING: A Generic Force Field for Molecular Simulations. 10.1021/j100389a010 CASWeb of Science®Google Scholar A. K. Rappé, C. J. Casewit, K. S. Colwell, W. A. Goddard III, and W. M. Skiff, J. Am. Chem. Soc., 114, 10024 (1992). UFF, a Full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics Simulations. 10.1021/ja00051a040 CASWeb of Science®Google Scholar C. J. Casewit, K. S. Colwell, and A. K. Rappé, J. Am. Chem. Soc., 114, 10035 (1992). Application of a Universal Force Field to Organic Molecules. 10.1021/ja00051a041 CASWeb of Science®Google Scholar C. J. Casewit, K. S. Colwell, and A. K. Rappé, J. Am. Chem. Soc., 114, 10046 (1992). Application of a Universal Force Field to Main Group Compounds. 10.1021/ja00051a042 CASWeb of Science®Google Scholar Molecular Simulations, Inc., 9685 Scranton Road, San Diego, CA 92121-2777, U.S.A. Google Scholar J. R. Maple, M.-J. Hwang, T. P. Stockfisch, U. Dinur, M. Waldman, C. S. Ewig, and A. T. Hagler, J. Comput. Chem., 15, 162 (1994). Derivation of Class II Force Fields. I. Methodology and Quantum Force Field for the Alkyl Functional Group and Alkane Molecules. 10.1002/jcc.540150207 CASWeb of Science®Google Scholar M.-J. Hwang, T. P. Stockfisch, and A. T. Hagler, J. Am. Chem. Soc., 116, 2515 (1994). Derivation of Class II Force Fields. 2. Derivation and Characterization of a Class II Force Field, CFF93, for the Alkyl Functional Group and Alkane Molecules. [Software available from Molecular Simulations, Inc., 9685 Scranton Road, San Diego, CA 92121-2777, U.S.A.] 10.1021/ja00085a036 CASWeb of Science®Google Scholar J. G. Vinter, A. Davies, and M. R. Saunders, J. Comput.-Aided Mol. Design, 1, 31 (1987). Strategic Approaches to Drug Design. I. An Integrated Software Framework for Molecular Modelling. [The Nemesis software is available from Oxford Molecular Ltd., The Magdalen Centre, Oxford Science Park, Sandford-on-Thames, Oxford, OX4 4GA, U.K.] 10.1007/BF01680556 CASPubMedGoogle Scholar T. A. Halgren, J. Am. Chem. Soc., 114, 7827 (1992). Representation of van der Waals (vdW) Interactions in Molecular Mechanics Force Fields: Potential Form, Combination Rules, and vdW Parameters. 10.1021/ja00046a032 CASWeb of Science®Google Scholar See, for example, R. J. Woods, in Reviews in Computational Chemistry, K. B. Lipkowitz and D. B. Boyd, Eds., VCH Publishers, New York, 1996, Vol. 9, pp. 129–165. The Application of Molecular Modeling Techniques to the Determination of Oligosaccharide Solution Conformations. Figure 6 in this reference corrects Figure 2.4 (p. 29) of Ref. 1. 10.1002/9780470125861.ch3 Google Scholar U. Dinur and A. T. Hagler, in Reviews in Computational Chemistry, K. B. Lipkowitz and D. B. Boyd, Eds., VCH Publishers, New York, 1991, Vol. 2, pp. 99–218. New Approaches to Empirical Force Fields. 10.1002/9780470125793.ch4 Google Scholar F. A. L. Anet and R. Anet, Tetrahedron Lett., 26, 5355 (1985). A Comparison of Empirical Force Field Parameters for Molecular Mechanics Calculations on Saturated Hydrocarbons. 10.1016/S0040-4039(00)98206-6 CASWeb of Science®Google Scholar K. Gundertofte, J. Palm, I. Pettersson, and A. Stamvik, J. Comput. Chem., 12, 200 (1991). A Comparison of Conformational Energies Calculated by Molecular Mechanics (MM2(85), SYBYL 5.1, SYBYL 5.21, and Chem-X) and Semiempirical (AM1 and PM3) Methods. 10.1002/jcc.540120209 CASWeb of Science®Google Scholar J. P. Bays, J. Chem. Educ., 69, 209 (1992). So You Want to Do Molecular Modeling? A Consumer's Guide to Desktop Modeling Programs for the Macintosh. 10.1021/ed069p209 CASWeb of Science®Google Scholar K. Gundertofte, T. Liljefors, P.-O. Norrby, and I. Pettersson, J. Comput. Chem., 17, 429 (1996). A Comparison of Conformational Energies Calculated by Several Molecular Mechanics Methods. 10.1002/(SICI)1096-987X(199603)17:4 3.0.CO;2-W CASWeb of Science®Google Scholar K. Rasmussen, in Lecture Notes in Chemistry, G. Berthier, M. J. S. Dewar, H. Fischer, K. Fukui, G. G. Hall, J. Hinze, H. H. Jaffé, J. Jortner, W. Kutzelnigg, and K. Reudenberg, Eds., Springer-Verlag, Berlin, 1985, pp. 17–159. Potential Energy Functions in Conformational Analysis. Google Scholar A. L. Verma, W. F. Murphy, and H. J. Bernstein, J. Chem. Phys., 60, 1540 (1974). Rotational Isomerism. XI. Raman Spectra of n-Butane, 2-Methylbutane, and 2,3-Dimethylbutane. 10.1063/1.1681228 CASWeb of Science®Google Scholar R. E. Carter, B. Nilsson, and K. Olsson, J. Am. Chem. Soc., 97, 6155 (1975). Barriers to Internal Rotation in 1,3,5-Trineopentylbenzenes. VII. Evidence for Attractive Steric Effects. 10.1021/ja00854a033 CASWeb of Science®Google Scholar R. E. Carter and P. Stilbs, J. Am. Chem. Soc., 98, 7515 (1976). Barrier to Internal Rotation in 1,3,5-Trineopentylbenzenes. 8. Molecular Mechanics Calculations. Theoretical Evidence for Attractive Steric Effects. 10.1021/ja00440a010 CASWeb of Science®Google Scholar B. Aurivillius and R. E. Carter, J. Chem. Soc., Perkin Trans. 2, 1033 (1978). Crystal and Molecular Structure of 2,4,6-Tribromo-1,3,5-trineopentylbenzene: Indication for Attractive Steric Effects in the Crystal. Google Scholar A. J. de Hoog, H. R. Buys, C. Altona, and E. Havinga, Tetrahedron, 25, 3365 (1969). Conformations of Non-Aromatic Ring Compounds. LII. NMR Spectra and Dipole Moments of 2-Alkoxytetrahydropyrans. 10.1016/S0040-4020(01)82869-6 CASWeb of Science®Google Scholar L. Nørskov-Lauritzen and N. L. Allinger, J. Comput. Chem., 5, 326 (1984). A Molecular Mechanics Treatment of the Anomeric Effect. 10.1002/jcc.540050408 Web of Science®Google Scholar M. Kitano, T. Fukuyama, and K. Kughitsu, Bull. Chem. Soc. Japan, 46, 384 (1973). Molecular Structure of N-Methylacetamide as Studied by Gas Electron Diffraction. 10.1246/bcsj.46.384 CASWeb of Science®Google Scholar Citing Literature Reviews in Computational Chemistry, Volume 9 ReferencesRelatedInformation

Referência(s)