The riboflavin/FAD cycle in rat liver mitochondria
2000; Wiley; Volume: 267; Issue: 15 Linguagem: Inglês
10.1046/j.1432-1327.2000.01552.x
ISSN1432-1033
AutoresMaria Barile, Carmen Brizio, Daniela Valenti, Caterina De Virgilio, Salvatore Passarella,
Tópico(s)Alcoholism and Thiamine Deficiency
ResumoHere we provide evidence that mitochondria isolated from rat liver can synthesize FAD from riboflavin that has been taken up and from endogenous ATP. Riboflavin uptake takes place via a carrier‐mediated process, as shown by the inverse relationship between fold accumulation and riboflavin concentration, the saturation kinetics [riboflavin K m and V max values were 4.4 ± 1.3 µ m and 35 ± 5 pmol·min −1 ·(mg protein) −1 , respectively] and the inhibition shown by the thiol reagent mersalyl, which cannot enter the mitochondria. FAD synthesis is due to the existence of FAD synthetase (EC 2.7.7.2), localized in the matrix, which has as a substrate pair mitochondrial ATP and FMN synthesized from taken up riboflavin via the putative mitochondrial riboflavin kinase. In the light of certain features, including the protein thermal stability and molecular mass, mitochondrial FAD synthetase differs from the cytosolic isoenzyme . Apparent K m and apparent V max values for FMN were 5.4 ± 0.9 µ m and 22.9 ± 1.4 pmol·min −1 ·(mg matrix protein) −1 , respectively. Newly synthesized FAD inside the mitochondria can be exported from the mitochondria in a manner sensitive to atractyloside but insensitive to mersalyl. The occurrence of the riboflavin/FAD cycle is proposed to account for riboflavin uptake in mitochondria biogenesis and riboflavin recovery in mitochondrial flavoprotein degradation; both are prerequisites for the synthesis of mitochondrial flavin cofactors.
Referência(s)