Artigo Revisado por pares

Comparison between chlorination and ozonation treatments for the elimination of the emerging contaminants amitriptyline hydrochloride, methyl salicylate and 2-phenoxyethanol in surface waters and secondary effluents

2014; Wiley; Volume: 90; Issue: 8 Linguagem: Inglês

10.1002/jctb.4441

ISSN

1097-4660

Autores

Francisco J. Real, Javier F. Benitez, Juan L. Acero, Francisco Casas,

Tópico(s)

Pharmaceutical and Antibiotic Environmental Impacts

Resumo

Journal of Chemical Technology & BiotechnologyVolume 90, Issue 8 p. 1400-1407 Research Article Comparison between chlorination and ozonation treatments for the elimination of the emerging contaminants amitriptyline hydrochloride, methyl salicylate and 2-phenoxyethanol in surface waters and secondary effluents Francisco J. Real, Corresponding Author Francisco J. Real Departamento de Ingeniería Química y Química Física, Universidad de Extremadura, 06006 Badajoz, SpainCorrespondence to: F.J. Real, Departamento de Ingeniería Química y Química Física, Universidad de Extremadura, 06006 Badajoz, Spain. E-mail: [email protected]Search for more papers by this authorJavier F. Benitez, Javier F. Benitez Departamento de Ingeniería Química y Química Física, Universidad de Extremadura, 06006 Badajoz, SpainSearch for more papers by this authorJuan L. Acero, Juan L. Acero Departamento de Ingeniería Química y Química Física, Universidad de Extremadura, 06006 Badajoz, SpainSearch for more papers by this authorFrancisco Casas, Francisco Casas Departamento de Ingeniería Química y Química Física, Universidad de Extremadura, 06006 Badajoz, SpainSearch for more papers by this author Francisco J. Real, Corresponding Author Francisco J. Real Departamento de Ingeniería Química y Química Física, Universidad de Extremadura, 06006 Badajoz, SpainCorrespondence to: F.J. Real, Departamento de Ingeniería Química y Química Física, Universidad de Extremadura, 06006 Badajoz, Spain. E-mail: [email protected]Search for more papers by this authorJavier F. Benitez, Javier F. Benitez Departamento de Ingeniería Química y Química Física, Universidad de Extremadura, 06006 Badajoz, SpainSearch for more papers by this authorJuan L. Acero, Juan L. Acero Departamento de Ingeniería Química y Química Física, Universidad de Extremadura, 06006 Badajoz, SpainSearch for more papers by this authorFrancisco Casas, Francisco Casas Departamento de Ingeniería Química y Química Física, Universidad de Extremadura, 06006 Badajoz, SpainSearch for more papers by this author First published: 23 May 2014 https://doi.org/10.1002/jctb.4441Citations: 8Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract BACKGROUND A new class of micropollutants, generally called emerging contaminants (ECs), is increasingly found in surface waters and wastewaters. Owing to their potential ecologic and health risks, ECs must be removed using different procedures, such as chemical oxidation processes. RESULTS The oxidation of the selected ECs amitriptyline hydrochloride, methyl salicylate and 2-phenoxyethanol has been investigated by means of two known oxidizing agents: chlorine and ozone. The efficiencies of elimination of each system have been compared, and apparent second-order rate constants of the reactions involved are determined. The variation of these kinetic parameters with pH is also evaluated, which enables determination of the intrinsic rate constant values for the oxidation reactions of the neutral and dissociated species. In addition, the simultaneous oxidation of these selected ECs in different water systems (ultrapure water, surface water from a reservoir and two secondary effluents) is studied, and the influence of operating conditions on the removal efficiency is established. CONCLUSION The reaction rates between chlorine or ozone and neutral and dissociated species revealed that the ozonation process is around three orders of magnitude higher than chlorination. © 2014 Society of Chemical Industry REFERENCES 1Lapworth DJ, Baran N, Stuart ME and Ward RS, Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environ Pollut 163: 287–303 (2012). 10.1016/j.envpol.2011.12.034 CASPubMedWeb of Science®Google Scholar 2Jjemba PK, Excretion and ecotoxicity of pharmaceuticals and personal care products in the environment. Ecotoxicol Environ Safety 63: 113–159 (2006). 10.1016/j.ecoenv.2004.11.011 CASPubMedWeb of Science®Google Scholar 3Fatta-Kassinos D, Meric S and Nikolaou A, Pharmaceutical residues in environmental waters and wastewater: current state of knowledge and future research. Anal Bioanal Chem 399: 251–275 (2011). 10.1007/s00216-010-4300-9 CASPubMedWeb of Science®Google Scholar 4Rivera-Utrilla J, Sánchez-Polo M, Ferro-García MA, Prados-Joya G and Ocampo-Pérez R, Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere 93: 1268–1287 (2013). 10.1016/j.chemosphere.2013.07.059 CASPubMedWeb of Science®Google Scholar 5Prieto-Rodríguez L, Oller I, Klamerth N, Agüera A, Rodríguez EM and Malato S, Application of solar AOPs and ozonation for elimination of micropollutants in municipal wastewater treatment plant effluents. Water Res 47: 1521–1528 (2013). 10.1016/j.watres.2012.11.002 CASPubMedWeb of Science®Google Scholar 6Kimura K, Kameda Y, Yamamoto H, Nakada N, Tamura I, Miyazaki M and Masunaga S, Occurrence of preservatives and antimicrobials in Japanese rivers. Chemosphere 107: 393–399 (2014). 10.1016/j.chemosphere.2014.01.008 CASPubMedWeb of Science®Google Scholar 7Martínez Bueno MJ, Gomez MJ, Herrera S, Hernando MD, Agüera A and Fernández-Alba AR, Occurrence and persistence of organic emerging contaminants and priority pollutants in five sewage treatment plants of Spain: two years pilot survey monitoring. Environ Pollut 164: 267–273 (2012). 10.1016/j.envpol.2012.01.038 CASPubMedWeb of Science®Google Scholar 8Kolpin DW, Blazer VS, Gray JL, Focazio MJ, Young JA, Alvarez DA, Iwanowicz LR, Foreman WT, Furlong ET, Speiran GK, Zaugg SD, Hubbard LE, Meyer MT, Sandstrom MW and Barber LB, Chemical contaminants in water and sediment near fish nesting sites in the Potomac river basin: determining potential exposures to smallmouth bass (Micropterus dolomieu). Sci Total Environ 443: 700–716 (2013). 10.1016/j.scitotenv.2012.09.063 CASPubMedWeb of Science®Google Scholar 9Real FJ, Benitez FJ, Acero JL, Roldan G and Casas F, Elimination of the emerging contaminants amitriptyline hydrochloride, methyl salicylate and 2-phenoxyethanol in ultrapure water and secondary effluents by photolytic and radicalary pathways. Ind Eng Chem Res 51: 16209–16215 (2012). 10.1021/ie302470g CASWeb of Science®Google Scholar 10Esplugas S, Bila DM, Krause LGT and Dezotti M, Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents. J Hazard Mater 149: 631–642 (2007). 10.1016/j.jhazmat.2007.07.073 CASPubMedWeb of Science®Google Scholar 11Puyol D, Monsalvo VM, Mohedano AF, Sanz JL and Rodriguez JJ, Cosmetic wastewater treatment by upflow anaerobic sludge blanket reactor. J Hazard Mater 185: 1059–1065 (2011). 10.1016/j.jhazmat.2010.10.014 CASPubMedWeb of Science®Google Scholar 12Canosa-Mas CE, Duffy JM, King MD, Thompson KC and Wayne RP, The atmospheric chemistry of methyl salicylate-reactions with atomic chlorine and with ozone. Atmos Environ 36: 2201–2205 (2002). 10.1016/S1352-2310(02)00173-5 CASWeb of Science®Google Scholar 13Albert A and Serjeant EP, The Determination of Ionization Constants: a Laboratory Manual, 3rd edn. Chapman and Hall, London and New York (1984). 10.1007/978-94-009-5548-6 Google Scholar 14Deborde M and von Gunten U, Reactions of chlorine with inorganic and organic compounds during water treatment-Kinetics and mechanism: a critical review. Water Res 42: 13–51 (2008). 10.1016/j.watres.2007.07.025 CASPubMedWeb of Science®Google Scholar 15Blessel KW, Rudy BC and Senkowsky BZ, Analytical Profiles of Drug Substances, Vol. 3, ed by K Florey. Academic Press, London (1974). 10.1016/S0099-5428(08)60066-0 Google Scholar 16Serjeant EP and Dempsey B, Ionisation constants of organic acids in aqueous solution. International Union of Pure and Applied Chemistry (IUPAC) Chemical Data Series No 23, Pergamon Press, New York (1979). Google Scholar 17Xiong F and Graham NJD, Rate constants for herbicide degradation by ozone. Ozone Sci Eng 14: 283–301 (1992). 10.1080/01919519208552274 CASWeb of Science®Google Scholar 18Benitez FJ, Beltran-Heredia J, Gonzalez T and Real FJ, Kinetics of the direct reaction between ozone and phenolic aldehydes. J Chem Technol Biotechnol 72: 235–244 (1998). 10.1002/(SICI)1097-4660(199807)72:3 3.3.CO;2-7 CASWeb of Science®Google Scholar 19Benitez FJ, Real FJ, Acero JL and Garcia C, Kinetics of the transformation of phenyl-urea herbicides during ozonation of natural waters: rate constants and model predictions. Water Res 41: 4073–4084 (2007). 10.1016/j.watres.2007.05.041 CASPubMedWeb of Science®Google Scholar 20Benitez FJ, Acero JL, Real FJ and Roldan G, Ozonation of pharmaceutical compounds: Rate constants and elimination in various water matrices. Chemosphere 77: 53–59 (2009). 10.1016/j.chemosphere.2009.05.035 CASPubMedWeb of Science®Google Scholar 21Acero JL, Benitez FJ, Gonzalez M and Benitez R, Kinetics of fenuron decomposition by single-chemical oxidants and combined systems. Ind Eng Chem Res 41: 4225–4232 (2002). 10.1021/ie010992x CASWeb of Science®Google Scholar 22Hoigné J and Bader H, Rate constants of reactions of ozone with organic and inorganic compounds in water-II. Dissociating organic compounds. Water Res 17: 185–194 (1983). 10.1016/0043-1354(83)90099-4 CASWeb of Science®Google Scholar 23Benitez FJ, Acero JL, Real FJ and Garcia J, Kinetics of photodegradation and ozonation of pentachlorophenol. Chemosphere 51: 651–662 (2003). 10.1016/S0045-6535(03)00153-X CASPubMedWeb of Science®Google Scholar 24Benner J, Salhi E, Ternes T and von Gunten, U, Ozonation of reverse osmosis concentrate: kinetics and efficiency of beta blocker oxidation. Water Res 42: 3003–3012 (2008). 10.1016/j.watres.2008.04.002 CASPubMedWeb of Science®Google Scholar 25Acero JL, Benitez FJ, Real FJ, Roldan G and Rodriguez E, Chlorination and bromination kinetics of emerging contaminants in aqueous systems. Chem Eng J 219: 43–50 (2013). 10.1016/j.cej.2012.12.067 CASWeb of Science®Google Scholar Citing Literature Volume90, Issue8August 2015Pages 1400-1407 ReferencesRelatedInformation

Referência(s)