Non-isothermal crystallization behavior of stereo diblock polylactides with relatively short poly( d -lactide) segments from the melt
2014; Wiley; Volume: 64; Issue: 1 Linguagem: Inglês
10.1002/pi.4806
ISSN1097-0126
AutoresHideto Tsuji, Tomohiko Tajima,
Tópico(s)Polymer crystallization and properties
ResumoPolymer InternationalVolume 64, Issue 1 p. 54-65 Research Article Non-isothermal crystallization behavior of stereo diblock polylactides with relatively short poly(d-lactide) segments from the melt Hideto Tsuji, Corresponding Author Hideto Tsuji Department of Environmental and Life Sciences, Graduate School of Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi, Aichi, 441-8580 JapanCorrespondence to: Hideto Tsuji, Department of Environmental and Life Sciences, Graduate School of Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan. E-mail: [email protected]Search for more papers by this authorTomohiko Tajima, Tomohiko Tajima Department of Environmental and Life Sciences, Graduate School of Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi, Aichi, 441-8580 JapanSearch for more papers by this author Hideto Tsuji, Corresponding Author Hideto Tsuji Department of Environmental and Life Sciences, Graduate School of Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi, Aichi, 441-8580 JapanCorrespondence to: Hideto Tsuji, Department of Environmental and Life Sciences, Graduate School of Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan. E-mail: [email protected]Search for more papers by this authorTomohiko Tajima, Tomohiko Tajima Department of Environmental and Life Sciences, Graduate School of Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi, Aichi, 441-8580 JapanSearch for more papers by this author First published: 15 September 2014 https://doi.org/10.1002/pi.4806Citations: 13Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Abstract Stereo diblock polylactides (SDB-PLAs) composed of relatively short poly(d-lactide) (PDLA) segments and relatively long poly(l-lactide) (PLLA) segments were synthesized to have a wide number-average molecular weight (Mn) range of 2.5 × 104–2.0 × 105 g mol−1 and d-lactyl unit content of 0.9–38.6%. The effects of incorporated short PDLA segments (Mn = 2.0 × 103–7.7 × 103 g mol−1) on crystallization behavior of the SDB-PLAs were first investigated during heating after complete melting and quenching or during slow cooling after complete melting. Stereocomplex (SC) crystallites can be formed at d-lactyl unit content as low as 4.3 and 5.8% for heating and slow cooling, respectively, and for Mn of PDLA segments as low as 2.0 × 103 and 3.5 × 103 g mol−1, respectively. With decreasing Mn and increasing d-lactyl unit content, the cold crystallization temperature during heating decreased and the crystallization temperature during slow cooling increased. With increasing d-lactyl unit content, the melting enthalpy (ΔHm) of SC crystallites during heating and the crystallinity (Xc) of SC crystallites after slow cooling increased, whereas ΔHm of PLLA homo-crystallites during heating and Xc of PLLA homo-crystallites after slow cooling decreased. The total ΔHm of SC crystallites and PLLA homo-crystallites during heating and the total Xc after slow cooling became a minimum at d-lactyl unit content of 10–15% and gave a maximum at d-lactyl unit content of 0%. Despite the accelerated crystallization of some of SDB-PLAs, the low values of total ΔHm and Xc at d-lactyl unit content of 10–15% are attributable to the formation of two crystalline species of SC crystallites and PLLA homo-crystallites. REFERENCES 1Kharas GB, Sanchez-Riera F and Severson DK, in Plastics from Microbes, ed. by DP Mobley. Hanser Publishers, New York, pp. 93– 137 (1994). 2Vert M, Schwarch G and Coudane J, J Macromol Sci A 32: 787– 796 (1995). 3Hartmann MH, in Biopolymers from Renewable Resources, ed. by DL Kaplan. Springer, Berlin, pp. 367– 411 (1998). 4Garlotta D, J Polym Environ 9: 63– 84 (2001). 5Södergård A and Stolt M, Prog Polym Sci 27: 1123– 1163 (2002). 6 R Auras, L-T Lim, SEM Selke and H Tsuji (eds), Poly(lactic acid): Synthesis, Structures, Properties, Processing, and Applications, Wiley Series on Polymer Engineering and Technology. Wiley, Hoboken, NJ (2010). 7Slager J and Domb AJ, Adv Drug Deliv Rev 55: 549– 583 (2003). 8Tsuji H, Macromol Biosci 5: 569– 597 (2005). 9Fukushima K and Kimura Y, Polym Int 55: 626– 642 (2006). 10Tsuji H, Ikada Y, Hyon SH, Kimura Y and Kitao T, J Appl Polym Sci 51: 337– 344 (1994). 11Takasaki M, Ito H and Kikutani T, J Macromol Sci Phys 42B: 403– 420 (2003). 12Zhang J, Tashiro K, Tsuji H and Domb AJ, Macromolecules 40: 1049– 1054 (2007). 13Fujita M, Sawayanagi T, Abe H, Tanaka T, Iwata T, Ito K et al., Macromolecules 41: 2852– 2858 (2008). 14Tsuji H, Nakano M, Hashimoto M, Takashima K, Katsura S and Mizuno A, Biomacromolecules 7: 3316– 3320 (2006). 15Ishii D, Ying TH, Mahara A, Murakami S, Yamaoka T, Lee W et al., Biomacromolecules 10: 237– 242 (2009). 16Spasova M, Manolova N, Paneva D, Mincheva R, Dubois P, Rashkov I et al., Biomacromolecules 11: 151– 159 (2010). 17Furuhashi Y and Yoshie N, Polym Int 61: 301– 306 (2012). 18Purnama P and Kim SH, Macromolecules 43: 1137– 1142 (2010). 19Tsuji H and Yamamoto S, Macromol Mater Eng 296: 583– 589 (2011). 20Tsuji H and Bouapao L, Polym Int 61: 442– 450 (2012). 21Yui N, Dijkstra PJ and Feijen J, Makromol Chem 191: 481– 488 (1990). 22Spassky N, Wisniewski M, Pluta C and Le Borgne A, Makromol Chem Phys 197: 2627– 2637 (1996). 23Spinu M, Jackson C, Keating MY and Gardner KH, J Macromol Sci A 33: 1497– 1530 (1996). 24Sarasua J-R, Prud'homme RE, Wisniewski M, Le Borgne A and Spassky N, Macromolecules 31: 3895– 3905 (1998). 25Ovitt TM and Coates GW, J Am Chem Soc 124: 1316– 1326 (2002). 26Li L, Zhong Z, de Jeu WH, Dijkstra PJ and Feijen J, Macromolecules 37: 8641– 8646 (2004). 27Hu J, Tang Z, Qiu X, Pang X, Yang Y, Chen X et al., Biomacromolecules 6: 2843– 2850 (2005). 28Tang Z, Yang Y, Pang X, Hu J, Chen X, Hu N et al., J Appl Polym Sci 98: 102– 108 (2005). 29Fukushima K, Furuhashi Y, Sogo K, Miura S and Kimura Y, Macromol Biosci 5: 21– 29 (2005). 30Fukushima K, Hirata M and Kimura Y, Macromolecules 40: 3049– 3055 (2007). 31Fukushima K and Kimura Y, J Polym Sci A: Polym Chem 46: 3714– 3722 (2008). 32Kim SH, Nederberg F, Zhang L, Wade CG, Waymouth RM and Hedrick JL, Nano Lett 8: 294– 301 (2080). 33Nederberg F, Appel E, Tan JPK, Sung HK, Fukushima K, Sly J et al., Biomacromolecules 10: 1460– 1468 (2009). 34Hirata M, Kobayashi K and Kimura Y. J Polym Sci A: Polym Chem 48: 794– 801 (2010). 35Tsuji H, Wada T, Sakamoto Y and Sugiura Y, Polymer 51: 4937– 4947 (2010). 36Masutani K, Lee CW and Kimura Y, Macromol Chem Phys 213: 695– 704 (2012). 37Masutani K, Lee CW and Kimura Y, Polymer 53: 6053– 6062 (2012). 38Rahaman MH and Tsuji H, Macromol React Eng 6: 446– 457 (2012). 39Rahaman MH and Tsuji H, J Appl Polym Sci 129: 2502– 2517 (2013). 40Masutani K, Lee CW and Kimura Y, Polym J 45: 427– 435 (2013). 41Rahaman MH and Tsuji H, Polym Degrad Stab 98: 709– 719 (2013). 42Tsuji H and Tajima T, Macromol Mater Eng 299: 430– 435 (2014). 43Tsuji H and Tajima T, Macromol Mater Eng 299:1089–1105 (2014). 44Brochu S, Prud'homme RE, Barakat I and Jérôme R, Macromolecules 28: 5230– 5239 (1995). 45Schmidt SC and Hillmyer MA, J Polym Sci B: Polym Phys 39: 300– 313 (2001). 46Yamane H and Sasai K, Polymer 44: 2569– 2575 (2003). 47Anderson KS and Hillmyer MA, Polymer 47: 2030– 2035 (2006). 48Tsuji H, Takai H, Fukuda N and Takikawa H, Macromol Mater Eng 291: 325– 335 (2006). 49Tsuji H, Takai H and Saha SK, Polymer 47: 3826– 3837 (2006). 50Narita J, Katagiri M and Tsuji H, Maromol Mater Eng 298: 270– 282 (2013). 51Narita J, Katagiri M and Tsuji H, Polym Int 62: 936– 948 (2013). 52Tsuji H, Sugiura Y, Sakamoto Y, Bouapao L and Itsuno S, Polymer 49: 1385– 1397 (2008). 53Ikada Y, Jamshidi K, Tsuji H and Hyon S-H, Macromolecules 20: 904– 906 (1987). 54Okihara T, Tsuji M, Kawaguchi A, Katayama K, Tsuji H, Hyon S-H et al., J Macromol Sci Phys B30: 119– 140 (1991). 55Tsuji H and Del Carpio CA, Biomacromolecules 4: 7– 11 (2003). 56Migliaresi C, De Lollis A, Fambri L and Cohn D, Clin Mater 8: 111– 118 (1991). 57Tsuji H, Miyase T, Tezuka Y and Saha SK, Biomacromolecules 6: 244– 254 (2005). 58Sakamoto Y and Tsuji H, Polymer 54: 2422– 2434 (2013). 59Sakamoto Y and Tsuji H, Macromol Chem Phys 214: 776– 786 (2013). 60Avrami M, J Chem Phys 7: 1103– 1112 (1939). 61Avrami M, J Chem Phys 8: 212– 224 (1940). 62Avrami M, J Chem Phys 9: 177– 184 (1941). 63Mandelkern L, Crystallization of Polymers. McGraw-Hill, New York (1964). 64Lorenzo AT, Arnal ML, Albuerne J and Müller AJ, Polym Test 26: 222– 231 (2007). 65See, for example, Gedde UW, Polymer Physics. Chapman & Hall, London, chap. 8, pp. 170– 198 (1995). Citing Literature Supporting Information Filename Description pi4806-sup-0001-FigureS1.docWord document, 3.6 MB Figure S1. (Figure 3) Relative crystallinity (Xr) of melt-quenched PLLAs (a) and D2- (b), D4- (c), D7- (d), and D8-based (e) SDB-PLAs during heating as a function of temperature. pi4806-sup-0002-FigureS2.docWord document, 888.5 KB Figure S2. (Figure 4) –ln(1–Xr/100) of melt-quenched PLLAs (a) and D2- (b), D4- (c), D7- (d), and D8-based (e) SDB-PLAs for heating as a function of crystallization time (tc). Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. Volume64, Issue1January 2015Pages 54-65 ReferencesRelatedInformation
Referência(s)