NMR Redox Studies of Desrulfovibrio vulgaris Cytochrome c3. Electron Transfer Mechanisms
1982; Wiley; Volume: 127; Issue: 1 Linguagem: Inglês
10.1111/j.1432-1033.1982.tb06849.x
ISSN1432-1033
AutoresJosé J. G. Moura, Helena Santos, Isabel Moura, Jean LeGall, Geoffrey R. Moore, Robert J. P. Williams, António V. Xavier,
Tópico(s)Electron Spin Resonance Studies
ResumoEuropean Journal of BiochemistryVolume 127, Issue 1 p. 151-155 Free Access NMR Redox Studies of Desrulfovibrio vulgaris Cytochrome c3 Electron Transfer Mechanisms José J. G. MOURA, José J. G. MOURA Centro de Química Estrutural, Complexo Interdisciplinar, Instituto Superior Técnico, Avenida Rovisco Pais, 1000 Lisboa, PortugalSearch for more papers by this authorHelena SANTOS, Helena SANTOS Centro de Química Estrutural, Complexo Interdisciplinar, Instituto Superior Técnico, Avenida Rovisco Pais, 1000 Lisboa, PortugalSearch for more papers by this authorIsabel MOURA, Isabel MOURA Centro de Química Estrutural, Complexo Interdisciplinar, Instituto Superior Técnico, Avenida Rovisco Pais, 1000 Lisboa, PortugalSearch for more papers by this authorJean LeGALL, Jean LeGALL Department of Biochemistry, University of Georgia, Boyd Graduate Studies Research Center, Athens, Georgia, USA 30602Search for more papers by this authorGeoffrey R. MOORE, Geoffrey R. MOORE Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, Great Britain, 0X1 3QRSearch for more papers by this authorRobert J. P. WILLIAMS, Robert J. P. WILLIAMS Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, Great Britain, 0X1 3QRSearch for more papers by this authorAntónio V. XAVIER, António V. XAVIER Centro de Química Estrutural, Complexo Interdisciplinar, Instituto Superior Técnico, Avenida Rovisco Pais, 1000 Lisboa, PortugalSearch for more papers by this author José J. G. MOURA, José J. G. MOURA Centro de Química Estrutural, Complexo Interdisciplinar, Instituto Superior Técnico, Avenida Rovisco Pais, 1000 Lisboa, PortugalSearch for more papers by this authorHelena SANTOS, Helena SANTOS Centro de Química Estrutural, Complexo Interdisciplinar, Instituto Superior Técnico, Avenida Rovisco Pais, 1000 Lisboa, PortugalSearch for more papers by this authorIsabel MOURA, Isabel MOURA Centro de Química Estrutural, Complexo Interdisciplinar, Instituto Superior Técnico, Avenida Rovisco Pais, 1000 Lisboa, PortugalSearch for more papers by this authorJean LeGALL, Jean LeGALL Department of Biochemistry, University of Georgia, Boyd Graduate Studies Research Center, Athens, Georgia, USA 30602Search for more papers by this authorGeoffrey R. MOORE, Geoffrey R. MOORE Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, Great Britain, 0X1 3QRSearch for more papers by this authorRobert J. P. WILLIAMS, Robert J. P. WILLIAMS Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, Great Britain, 0X1 3QRSearch for more papers by this authorAntónio V. XAVIER, António V. XAVIER Centro de Química Estrutural, Complexo Interdisciplinar, Instituto Superior Técnico, Avenida Rovisco Pais, 1000 Lisboa, PortugalSearch for more papers by this author First published: September 1982 https://doi.org/10.1111/j.1432-1033.1982.tb06849.xCitations: 56AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract The 300-MHz proton NMR spectra of the tetrahaem cytochrome c3 from Desulfovibrio vulgaris were examined while varying the pH and the redox potential. The analysis of the complete NMR reoxidation pattern was done taking into account all the 16 redox states that can be present in the redox titration of a tetra-redox-center molecule. A network of saturation transfer experiments performed at different oxidation stages, between the fully reduced and the fully oxidized states, allowed the observation of different resonances for some of the haem methyl groups. In the present experimental conditions, some of the haems show a fast intramolecular electron exchange rate, but the intermolecular electron exchange is always slow. In intermediate reoxidation stages, large shifts of the resonances of some haem methyl groups were observed upon changing the pH. These shifts are discussed in terms of a pH dependence of the haem midpoint redox potentials. The physiological relevance of this pH dependence is discussed. REFERENCES 1 LeGall, J., Moura, J. J. G., Peck, H. D. & Xavier, A. V. (1982) Iron-Sulfur Proteins ( T. G. Spiro, ed.) Chap. V, pp. 177–248, John Wiley & Sons, New York . Google Scholar 2 Ambler, R. P., Bruschi, M. & LeGall, J. (1971) FEBS Lett. 18, 347–350. 10.1016/0014-5793(71)80483-0 CASPubMedWeb of Science®Google Scholar 3 McDonald, C. C., Phillips, W. D. & LeGall, J. (1974) Biochemistry, 13, 1952–1958. 10.1021/bi00706a027 CASPubMedWeb of Science®Google Scholar 4 DerVartanian, D. V. & LeGall, J. (1974) Biochim. Biophys. Acta, 346, 79–99. 10.1016/0304-4173(74)90012-3 CASPubMedWeb of Science®Google Scholar 5 DerVartanian, D. V., Xavier, A. V. & LeGall, J. (1978) Biochimie (Paris) 60, 315–320. 10.1016/S0300-9084(78)80829-3 Web of Science®Google Scholar 6 Sokol, W. F., Evans, D. H., Niki, K. & Yagi, T. (1980) J. Electroanal. Chem. 108, 107–115. 10.1016/S0022-0728(80)80097-0 CASWeb of Science®Google Scholar 7 Haser, R., Pierrot, M., Frey, M., Payan, P. & Astier, J. P. (1979) Nature (Lond.) 282, 806–810. 10.1038/282806a0 CASPubMedWeb of Science®Google Scholar 8 Higuchi, Y., Bando, S., Kusunoki, M., Matsuura, Y., Yasuoka, N., Kagudo, M., Yamanaka, T., Yagi, T. & Inokuchi, H. (1981) Biochemistry, 89, 1659–1662. PubMedWeb of Science®Google Scholar 9 Higuchi, Y., Kusunoki, M., Yasuoka, N., Kakudo, M. & Yagi, T. (1981) J. Biochem. (Tokyo) 90, 1715–1723. CASPubMedWeb of Science®Google Scholar 10 Dobson, C. M., Hoyle, N. J., Geraldes, C. F., Bruschi, M., LeGall, J., Wright, P. F. & Williams, R. J. P. (1974) Nature (Lond.) 249, 425–429. 10.1038/249425a0 CASPubMedWeb of Science®Google Scholar 11 Redfield, A. G. & Gupta, R. K. (1971) Cold Spring Harbor Symp. Quant. Biol. 36, 405–411. 10.1101/SQB.1972.036.01.052 CASWeb of Science®Google Scholar 12 Moura, I., Moura, J. J. G., Santos, M. H. & Xavier, A. V. (1980) Cienc. Biol. (Lisboa) 5, 189–191. Google Scholar 13 Wüthrich, K. (1976) NMR in Biological Research: Peptides and Proteins, Chap. VI, North-Holland Publishing Co., Amsterdam . Google Scholar 14 Papa, S. (1982) J. Bioenerg. Biomembr. 14, 69–86. 10.1007/BF00745021 CASPubMedWeb of Science®Google Scholar 15 Pettigrew, G. W., Meyer, T. E., Bartsch, R. G. & Kamen, M. D. (1975) Biochim. Biophys. Acta, 430, 197–280. 10.1016/0005-2728(76)90079-7 PubMedWeb of Science®Google Scholar 16 Pettigrew, G. W., Bartsch, R. G., Meyer, T. E. & Kamen, M. D. (1978) Biochim. Biophys. Acta, 503, 509–523. 10.1016/0005-2728(78)90150-0 CASPubMedWeb of Science®Google Scholar 17 Moore, G. R., Pettigrew, G. W., Pitt, R. C. & Williams, R. J. P. (1980) Biochim. Biophys. Acta, 590, 261–271. 10.1016/0005-2728(80)90030-4 CASPubMedWeb of Science®Google Scholar 18 Prince, R. C. & Dutton, P. L. (1977) Biochem. Biophys. Acta, 459, 573–577. 10.1016/0005-2728(77)90055-X CASPubMedWeb of Science®Google Scholar Citing Literature Volume127, Issue1September 1982Pages 151-155 ReferencesRelatedInformation
Referência(s)