THE PHYSIOLOGIC BASIS FOR VASOPRESSOR THERAPY DURING SHOCK
1959; American College of Physicians; Volume: 50; Issue: 5 Linguagem: Inglês
10.7326/0003-4819-50-5-1092
ISSN1539-3704
Autores Tópico(s)Hemodynamic Monitoring and Therapy
ResumoArticle1 May 1959THE PHYSIOLOGIC BASIS FOR VASOPRESSOR THERAPY DURING SHOCKSHELDON E. GREISMAN, M.D.SHELDON E. GREISMAN, M.D.Search for more papers by this authorAuthor, Article, and Disclosure Informationhttps://doi.org/10.7326/0003-4819-50-5-1092 SectionsAboutPDF ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinkedInRedditEmail ExcerptINTRODUCTIONThe therapeutic usefulness of vasopressor agents, although employed many years for correction of various shock syndromes, remains highly controversial. Some investigators disapprove of their indiscriminate use;1-3others have advocated such therapy routinely.4, 5The basis for the divergence of opinion may be traced to variation in interpretation of the clinical evidence. Conclusions favoring the routine employment of vasopressor therapy often fail to consider that: (1) improvement of the systemic arterial blood pressure is not synonymous with therapeutic benefit; in some instances "cures" have been ascribed to vasopressor drugs although the ultimate outcome was fatal; (2) lessening of cyanosis, though...Bibliography1. Wilkins RW: Treatment of the state of shock. XXIII. The role of vasopressor agents in the treatment of shock, Symposium on Shock, Army Medical Service Graduate School, May, 1951. Google Scholar2. Fine J: Summary paper. XXXIII. Treatment of shock, Symposium on Shock, Army Medical Service Graduate School, May, 1951. Google Scholar3. Nickerson M: Factors of vasoconstriction and vasodilatation in shock, J. Michigan M. Soc. 54: 45, 1955. MedlineGoogle Scholar4. MillerShifrinKaplanGoldBillingsKatz AJABMHALN: Arterenol in treatment of shock, J. A. M. A. 152: 1198, 1953. CrossrefMedlineGoogle Scholar5. Weil MH: Clinical studies on a vasopressor agent: metaraminol (Aramine). II. Observations on its use in the management of shock, Am. J. M. Sc. 230: 357, 1955. CrossrefMedlineGoogle Scholar6. MarkleyBocanegraBazanTempleChiapporiMoralesCarrion KMARMGA: Clinical evaluation of saline solution therapy in burn shock, J. A. M. A. 161: 1465, 1956. CrossrefMedlineGoogle Scholar7. Allen FM: Treatment of shock, J. A. M. A. 163: 488, 1957. CrossrefGoogle Scholar8. MahoneyHowland EBJW: Shock: the physiologic and clinical aspects, Surgery 13: 188, 1943. Google Scholar9. SokoloffKingWechsler LBDRL: The role of 1-nor-epinephrine in the treatment of shock, M. Clin. North America 38: 499, 1954. CrossrefGoogle Scholar10. Seeley SF: The role of intra-arterial transfusion in the correction of circulatory volume disparity, Ann. New York Acad. Sc. 55: 446, 1952. CrossrefMedlineGoogle Scholar11. Blalock A: Experimental shock. The cause of the low blood pressure produced by muscle injury, Arch. Surg. 20: 959, 1930. CrossrefGoogle Scholar12. Blalock A: Experimental shock. VI. The probable cause for the reduction in the blood pressure following mild trauma to an extremity, Arch. Surg. 22: 598, 1931. CrossrefGoogle Scholar13. ShorrZweifachFurchgott EBWRF: On the occurrence, sites, and modes of origin and destruction, of principles affecting the compensatory vascular mechanisms in experimental shock, Science 102: 489, 1945. CrossrefMedlineGoogle Scholar14. ZweifachLeeHymanChambers BWRECR: Omental circulation in morphinized dogs subjected to graded hemorrhage, Ann. Surg. 120: 232, 1944. CrossrefMedlineGoogle Scholar15. ZweifachChambersLeeHyman BWRREC: Reactions of peripheral blood vessels in experimental hemorrhage, Ann. New York Acad. Sc. 49: 553, 1948. CrossrefMedlineGoogle Scholar16. Alexander RS: Venomotor tone in hemorrhage and shock, Circul. Res. 3: 181, 1955. CrossrefMedlineGoogle Scholar17. ChambersZweifach RBW: Topography and function of the mesenteric capillary circulation, Am. J. Anat. 75: 173, 1944. CrossrefGoogle Scholar18. ChambersZweifach RBW: Functional activity of the blood capillary bed, with special reference to visceral tissue, Ann. New York Acad. Sc. 46: 683, 1946. CrossrefGoogle Scholar19. Chambers R: Vasomotion in hemodynamics of blood capillary circulation, Ann. New York Acad. Sc. 49: 549, 1948. CrossrefMedlineGoogle Scholar20. GibsonSeligmanPeacockAubFineEvans JGAMWCCJJRD: The distribution of red cells and plasma in large and minute vessels in the normal dog, determined by radioactive isotopes of iron and iodine, J. Clin. Investigation 25: 848, 1946. CrossrefGoogle Scholar21. Greisman SE: Unpublished observations. Google Scholar22. Wiggers CJ: Physiology in health and disease, 1947, Lea & Febiger, Philadelphia, p. 813. Google Scholar23. Gatch WD: Disturbances of the peripheral circulation—considerations of the definition of shock, Illinois M. J. 84: 12, 1943. Google Scholar24. Moon VH: Circulatory failure of capillary origin, J. A. M. A. 114: 1312, 1940. Google Scholar25. Chambers R: Blood capillary circulation under normal conditions and in traumatic shock, Nature, London 162: 835, 1948. CrossrefMedlineGoogle Scholar26. Zweifach BW: Peripheral circulatory changes as criteria for hemorrhagic shock therapy, Circulation 1: 433, 1950. CrossrefMedlineGoogle Scholar27. ChambersZweifachLowenstein RBWBE: Circulatory reactions of rats traumatized in Noble-Collip drum, Am. J. Physiol. 139: 123, 1943. CrossrefGoogle Scholar28. ChambersZweifachLowenstein RBWBE: Peripheral circulation during tourniquet shock syndrome in the rat, Ann. Surg. 120: 791, 1944. CrossrefMedlineGoogle Scholar29. ZweifachAdellChambersClowes BWRGRGH: Role of decompensatory reactions of peripheral blood vessels in tourniquet shock, Surg., Gynec. and Obst. 80: 593, 1945. Google Scholar30. ZweifachLowensteinChambers BWBER: Responses of blood capillaries to acute hemorrhage in the rat, Am. J. Physiol. 142: 80, 1944. CrossrefGoogle Scholar31. GibsonSeligmanPeacockFineAubEvans JEAMWCJJCRD: The circulating red cell and plasma volume and the distribution of blood in large and minute vessels in experimental shock in dogs, measured by radioactive isotopes of iron and iodine, J. Clin. Investigation 26: 126, 1947. CrossrefGoogle Scholar32. DeaversHuggins SRA: Red cell trapping and fluid release in hemorrhage, Federation Proc. 17: 33, 1958. Google Scholar33. Greisman SE: The reaction of the capillary bed of the nailfold to the continuous intravenous infusion of levo-nor-epinephrine in patients with normal blood pressure and with essential hypertension, J. Clin. Investigation 33: 975, 1954. CrossrefMedlineGoogle Scholar34. KniselyBlochEliotWarner MHEHTSL: Sludged blood, Science 106: 431, 1947. CrossrefMedlineGoogle Scholar35. HarkinsHarmon HNPH: Blood concentration produced by plasmaphoresis, Surgery 1: 276, 1937. Google Scholar36. SeligmanFrankFine AMHAJ: Traumatic shock. XII. Hemodynamic effects of alterations of blood viscosity in normal dogs and dogs in shock, J. Clin. Investigation 25: 1, 1946. CrossrefGoogle Scholar37. NelsonSeligson RMD: Studies on blood ammonia in normal and shock states, Surgery 34: 1, 1953. MedlineGoogle Scholar38. Greisman SE: Unpublished observations. Google Scholar39. MazurShorr AE: Hepatorenal factors in circulatory homeostasis. IX. The identification of the hepatic vasodepressor substance, VDM, with ferritin, J. Biol. Chem. 176: 771, 1948. CrossrefMedlineGoogle Scholar40. ShorrZweifachFurchgottBaez EBWRFS: Hepatorenal factors in circulatory homeostasis. IV. Tissue origins of the vasotropic principles, VEM and VDM, which appear during evolution of hemorrhagic and tourniquet shock, Circulation 3: 42, 1951. CrossrefMedlineGoogle Scholar41. HamptonFreidmanMayerson JKJJHS: An evaluation of the role of ferritin (VDM) in traumatic shock, Proc. Soc. Exper. Biol. and Med. 79: 643, 1952. CrossrefMedlineGoogle Scholar42. Stopak JH: Effect of ferritin on the mortality of mice subjected to tourniquet shock, Am. J. Physiol. 175: 99, 1953. CrossrefMedlineGoogle Scholar43. CorcoranMassonSchaffenburg ACGC: Ferritin: effect on blood pressure and pressor response in rats, Federation Proc. 8: 28, 1949. Google Scholar44. FrankJacobFriedmanRutenbergGlotzerFine HASWEWAMPJ: Traumatic shock: irreversibility of hemorrhagic shock and VDM hypothesis. Failure of ferritin to affect arterial pressure and survival period of hepatectomizednephrectomized dogs, Am. J. Physiol. 168: 150, 1952. CrossrefMedlineGoogle Scholar45. ZweifachMetz BWDB: Relation of blood-borne agents acting on mesenteric vascular bed to general circulatory reactions, J. Clin. Investigation 34: 653, 1955. CrossrefMedlineGoogle Scholar46. Greisman SE: Unpublished observations. Google Scholar47. GreismanWisseman SECL: The significance of vascular injurious factors in human plasma as determined by animal assay, to be published. Google Scholar48. GreenStoner HNHB: The nature and mode of action of the intravenous toxic factors in saline extracts of muscle and other tissues, Brit. J. Exper. Path. 28: 189, 1947. MedlineGoogle Scholar49. Greisman SE: Unpublished observations. Google Scholar50. ZweifachNaglerLewis BWALT: The role of epinephrine in the reactions produced by the endotoxins of gram-negative bacteria. II. The changes produced by endotoxin in the vascular reactivity to epinephrine, in the rat mesoappendix and the isolated, perfused rabbit ear, J. Exper. Med. 104: 881, 1956. CrossrefMedlineGoogle Scholar51. GreismanWisseman SECL: Studies of rickettsial toxins. IV. Cardiovascular functional abnormalities induced by R. mooseri toxin in the white rat, J. Immunol., in press. Google Scholar52. JacobWeitzelGordonKormanSchweinburgFrankFine SHEHFBHAJ: Bacterial action in development of irreversibility to transfusion in hemorrhagic shock in the dog, Am. J. Physiol. 179: 523, 1954. CrossrefMedlineGoogle Scholar53. FineFrankSchweinburgJacobGordon JHFST: The bacterial factor in traumatic shock, Ann. New York Acad. Sc. 55: 429, 1952. CrossrefMedlineGoogle Scholar54. SchweinburgFine FBJ: Resistance to bacteria in hemorrhagic shock. II. Effect of transient vascular collapse on sensitivity to endotoxin, Proc. Soc. Exper. Biol. and Med. 88: 589, 1955. CrossrefMedlineGoogle Scholar55. Lillehei RC: Presented at the 42nd Annual Congress of the American College of Surgeons, San Francisco, 1956. Google Scholar56. ZweifachThomas BWL: The relationship between the vascular manifestations of shock produced by endotoxin, trauma, and hemorrhage. I. Certain similarities between the reactions in normal and endotoxin-tolerant rats, J. Exper. Med. 106: 385, 1957. CrossrefMedlineGoogle Scholar57. SchweinburgShapiroFrankFine FBPBEDJ: Host resistance in hemorrhagic shock. IX. Demonstration of circulating lethal toxin in hemorrhagic shock, Proc. Soc. Exper. Biol. and Med. 95: 646, 1957. CrossrefMedlineGoogle Scholar58. SmiddyFine GFJ: Host resistance to hemorrhagic shock. X. Induction of resistance by shock plasma and by endotoxins, Proc. Soc. Exper. Biol. and Med. 96: 558, 1957. CrossrefMedlineGoogle Scholar59. ZweifachGordonWagnerReyniers BWHAMJA: Irreversible hemorrhagic shock in germfree rats, J. Exper. Med. 107: 437, 1958. CrossrefMedlineGoogle Scholar60. SanfordNoyes JPHE: Studies on the absorption of Escherichia coli endotoxin from the gastrointestinal tract of dogs as a factor in the pathogenesis of irreversible hemorrhagic shock, J. Lab. and Clin. Med. 50: 948, 1957. Google Scholar61. LandyShear MMJ: Similarity of host responses elicited by polysaccharides of animal and plant origin and by bacterial endotoxins, J. Exper. Med. 106: 77, 1957. CrossrefMedlineGoogle Scholar62. Thomas L: The role of epinephrine in the reactions produced by the endotoxins of gram-negative bacteria. I. Hemorrhagic necrosis produced by epinephrine in the skin of endotoxin treated rabbits, J. Exper. Med. 104: 865, 1956. CrossrefMedlineGoogle Scholar63. DelaunayBoquetLebrunLehoultDelaunay APJYM: The mechanism of action of bacterial endotoxins, vasomotor difficulties in intoxicated animals and their consequences, J. Physiol. 40: 89, 1948. Google Scholar64. SeeligJoseph GDR: On the condition of the vaso-constrictor center during the development of shock, J. Lab. and Clin. Med. 1: 283, 1916. Google Scholar65. Moon VH: Shock, its dynamics, occurrence and management, 1942, Lea & Febiger, Philadelphia. Google Scholar66. WattsBragg DTAD: Blood epinephrine levels and automatic reinfusion of blood during hemorrhagic shock in dogs, Proc. Soc. Exper. Biol. and Med. 96: 609, 1957. CrossrefMedlineGoogle Scholar67. AdsonBrown AWGE: Raynaud's disease of the upper extremities, J. A. M. A. 92: 444, 1929. CrossrefGoogle Scholar68. Greisman SE: Unpublished observations. Google Scholar69. YardNickerson ACM: Shock produced in dogs by infusions of norepinephrine, Federation Proc. 15: 502, 1956. Google Scholar70. KesslerBlaszkowskiParkins FBAMWM: Perfusion of intestine in prevention of shock and death following temporary occlusion of thoracic aorta, Federation Proc. 17: 85, 1958. Google Scholar71. SelkurtAlexanderPatterson EERSMB: The role of the mesenteric circulation in the irreversibility of hemorrhagic shock, Am. J. Physiol. 149: 732, 1947. CrossrefMedlineGoogle Scholar72. BaezHersheyRovestine SSEA: Adjustments of the intramural vascular bed of the intestine during shock in the rat, Federation Proc. 17: 8, 1958. Google Scholar73. JohnsonSelkurt PCEE: Intestinal weight changes in hemorrhagic shock, Am. J. Physiol. 193: 599, 1958. CrossrefMedlineGoogle Scholar74. Selkurt EE: Mesenteric hemodynamics during hemorrhagic shock in the dog with functional absence of the liver, Am. J. Physiol. 193: 599, 1958. CrossrefMedlineGoogle Scholar75. EngelForrai DE: Capillary permeability in traumatic shock, J. Physiol. 102: 127, 1943. CrossrefMedlineGoogle Scholar76. FineSeligman JAM: Traumatic shock. VII. A study of the problem of the lost plasma in hemorrhagic, tourniquet, and burn shock by the use of radioactive iodoplasma protein, J. Clin. Investigation 23: 720, 1944. CrossrefMedlineGoogle Scholar77. BaratzIngraham RARC: Capillary permeability during hemorrhagic shock in the rat, Proc. Soc. Exper. Biol. and Med. 89: 642, 1955. CrossrefMedlineGoogle Scholar78. FineSeligmanFrank JAMHA: Traumatic shock, an experimental study including evidence against the capillary leakage hypothesis, Ann. Surg. 118: 238, 1943. CrossrefMedlineGoogle Scholar79. Landis EM: Capillary pressure and capillary permeability, Physiol. Rev. 14: 404, 1934. CrossrefGoogle Scholar80. WiggersIngraham HCRC: Hemorrhagic shock: definition and criteria for its diagnosis, J. Clin. Investigation 25: 30, 1946. CrossrefGoogle Scholar81. Greisman SE: Capillary observations in patients with hemorrhagic fever and other infectious illnesses, J. Clin. Investigation 36: 1688, 1957. CrossrefMedlineGoogle Scholar82. McMasterKruse PDH: Peripheral vascular reactions in anaphylaxis of the mouse, J. Exper. Med. 89: 583, 1949. CrossrefMedlineGoogle Scholar83. Lecomte J: In vivo anaphylactic reactions of the mesenteric vessels of the guinea pig, Acta Allergol. 10: 15, 1956. CrossrefMedlineGoogle Scholar84. Greisman SE: Impairment of cutaneous capillary vasomotion in patients with decompensated cirrhosis of the liver, unpublished observations. Google Scholar85. ClarkeCleghornFergusonFowler APRAJKJL: Factors concerned in the circulatory failure of adrenal insufficiency, J. Clin. Investigation 26: 359, 1947. CrossrefGoogle Scholar86. FritzLevine IR: Action of adrenal cortical steroids and norepinephrine on vascular responses of stress in adrenalectomized rats, Am. J. Physiol. 165: 456, 1951. CrossrefMedlineGoogle Scholar87. GreenLewisNickersonHeller HDRNNDAL: Blood flow, peripheral resistance and vascular tonus, with observations on the relationship between blood flow and cutaneous temperature, Am. J. Physiol. 141: 518, 1944. CrossrefGoogle Scholar88. EckenhoffHafkenscheilFoltzDriver JEJHELRL: Influence of hypotension on coronary blood flow, cardiac work and cardiac efficiency, Am. J. Physiol. 152: 545, 1948. CrossrefMedlineGoogle Scholar89. CaseSarnoffBraunwaldStainbyTaylor RBSJEWNZ: Hemodynamic determinants of coronary blood flow and myocardial oxygen consumption, Federation Proc. 16: 32, 1956. Google Scholar90. CordayBergmanSchwartzSpritzlerPrinzmetal EHCLLRJM: Studies on the coronary circulation. IV. The effect of shock on the heart and its treatment, Am. Heart J. 37: 560, 1949. CrossrefMedlineGoogle Scholar91. RemingtonHamiltonBoydHamiltonCaddell JWWFGHWFHM: Role of vasoconstriction in the response of the dog to hemorrhage, Am. J. Physiol. 161: 116, 1950. CrossrefMedlineGoogle Scholar92. OvermanWang RRSC: The contributory role of the afferent nervous factor in experimental shock: sublethal hemorrhage and sciatic nerve stimulation, Am. J. Physiol. 148: 289, 1947. CrossrefMedlineGoogle Scholar93. WangOvermanFertigRootGregerson SCRRJWWSMI: The relation of blood volume reduction to mortality rate in hemorrhagic and traumatic shock in dogs, Am. J. Physiol. 148: 164, 1947. CrossrefMedlineGoogle Scholar94. GilmoreSmytheHandford JPCMSW: The effect of 1-norepinephrine on cardiac output in the anesthetized dog during graded hemorrhage, J. Clin. Investigation 33: 884, 1954. CrossrefMedlineGoogle Scholar95. LevyBrind MNSH: Influence of 1-norepinephrine upon cardiac output in anesthetized dogs, Circul. Res. 5: 85, 1957. CrossrefMedlineGoogle Scholar96. FowlerFranch NOR: Mechanism of pressor responses to 1-norepinephrine during hemorrhagic shock, Circul. Res. 5: 153, 1957. CrossrefMedlineGoogle Scholar97. FreisRose EDJC: The sympathetic nervous system, the vascular volume and the venous return in relation to cardiovascular integration, Am. J. Med. 22: 175, 1957. CrossrefMedlineGoogle Scholar98. FrankFrankJacobWeizelKormanFine EDHASHAHJ: Effect of norepinephrine on circulation of the dog in hemorrhagic shock, Am. J. Physiol. 186: 74, 1956. CrossrefMedlineGoogle Scholar99. CatchpoleHackelSimeone BNDBFA: Coronary and peripheral blood flow in experimental hemorrhagic hypotension treated with 1-nor-epinephrine, Ann. Surg. 142: 372, 1955. CrossrefMedlineGoogle Scholar100. Garb S: Effects of epinephrine, arterenol and Isuprel on the electrical potentials of mammalian heart muscle; inability of nitrites to block effects, Am. J. Physiol. 172: 399, 1953. CrossrefMedlineGoogle Scholar101. Lee KS: The simultaneous recording of oxygen uptake and contraction of papillary muscles as affected by 1-epinephrine and 1-norepinephrine, J. Pharmacol. and Exper. Therap. 109: 313, 1953. MedlineGoogle Scholar102. MarshPelletierRoss DMMHCA: The comparative pharmacology of the N-alkylarterenols, J. Pharmacol. and Exper. Therap. 92: 108, 1948. MedlineGoogle Scholar103. LuduenaAnanenkoSiegmundMiller FPEOHLC: Comparative pharmacology of the optical isomers of arterenol, J. Pharmacol. and Exper. Therap. 95: 155, 1949. MedlineGoogle Scholar104. LuMelville FCKI: Effects of noradrenaline on coronary flow and heart contraction, as recorded concurrently in the isolated rabbit heart, J. Physiol. 113: 365, 1951. CrossrefMedlineGoogle Scholar105. LansingStevenson AMJA: Mechanism of action of norepinephrine in hemorrhagic shock, Am. J. Physiol. 193: 289, 1958. CrossrefMedlineGoogle Scholar106. LansingStevensonGowdey AMJACW: The effect of noradrenaline on the survival of rats subjected to hemorrhagic shock, Canad. J. Biochem. and Physiol. 35: 93, 1957. CrossrefMedlineGoogle Scholar107. SarnoffKaufman SJHE: Effect of Aramine on the survival of dogs subjected to hemorrhagic hypotension, Circul. Res. 2: 420, 1954. CrossrefMedlineGoogle Scholar108. Opdyke DF: The survival of dogs treated with Neo-synephrine during the production of hemorrhagic shock, Am. J. Physiol. 142: 576, 1944. CrossrefGoogle Scholar109. FrankAltschuleZamcheck HAMDN: Traumatic shock. IX. Pressor therapy: the effect of Paredrine on the circulation in hemorrhagic shock in dogs, J. Clin. Investigation 24: 54, 1945. CrossrefMedlineGoogle Scholar110. MoyerMorrisSnyder JHGH: A comparison of the cerebral hemodynamic response to Aramine and norepinephrine in the normotensive and the hypotensive subject, Circulation 10: 265, 1954. CrossrefMedlineGoogle Scholar111. BestTaylor CHNB: Physiological basis of medical practice, 1955, The Williams & Wilkins Co., Baltimore. Google Scholar112. SayerSheldonKuoZinsserHorwitzSumen JJWFPTHFOAF: Favorable effects of 1-nor-epinephrine on experimental localized ischemia of the myocardium, J. Clin. Investigation 31: 658, 1952. Google Scholar113. SarnoffCaseBerglundSarnoff SJRBELC: Ventricular function. V. The circulatory effects of Aramine; mechanism of action of "vasopressor" drugs in cardiogenic shock, Circulation 10: 84, 1954. CrossrefMedlineGoogle Scholar114. GriffithWallaceCochranNerlichFrasher GCWBBWEWG: The treatment of shock associated with myocardial infarction, Circulation 9: 527, 1954. CrossrefMedlineGoogle Scholar115. BinderRyanMarcusMuglerStrangeAgress MJJASFDCM: Evaluation of therapy in shock following myocardial infarction, Am. J. Med. 18: 622, 1955. CrossrefMedlineGoogle Scholar116. CordayRothenberg ESF: The clinical aspects of cerebral vascular insufficiency, Ann. Int. Med. 47: 626, 1957. LinkGoogle Scholar117. MoyerSkeltonMills JHJMLC: Nor-epinephrine; effect in normal subjects; use in treatment of shock unresponsive to other measures, Am. J. Med. 15: 330, 1953. CrossrefMedlineGoogle Scholar118. AbellPage RGIH: The effects of renal hypertension on the vessels of the ears of rabbits, J. Exper. Med. 75: 673, 1942. CrossrefMedlineGoogle Scholar119. AbellPage RGIH: The reaction of vessels of the mesentery and intestine to angiotonin and renin, Am. J. M. Sc. 212: 166, 1946. CrossrefMedlineGoogle Scholar120. AbellPage RGIH: The reaction of peripheral blood vessels to angiotonin, renin, and other pressor agents, J. Exper. Med. 75: 305, 1942. CrossrefMedlineGoogle Scholar121. Greisman SE: The relation of angiotonin and 1-norepinephrine to essential hypertension as determined by the reaction of the nailfold capillary bed, J. Exper. Med. 103: 477, 1956. CrossrefMedlineGoogle Scholar122. Page IH: Hypotension and loss of pressor response to angiotonin as the result of trauma to the central nervous system and severe hemorrhage, J. Exper. Med. 78: 41, 1943. CrossrefMedlineGoogle Scholar123. Yoe RH: L-arterenol in the treatment of epidemic hemorrhagic fever, Am. J. Med. 16: 683, 1954. CrossrefMedlineGoogle Scholar124. WeilHinshawVisscherSpinkMacLean MHLBMBWWLD: Hemodynamic effects of vasopressor agent (metaraminol) on hypotension in dogs produced by endotoxin, Proc. Soc. Exper. Biol. and Med. 92: 610, 1956. CrossrefMedlineGoogle Scholar125. Thomas L: Necrotizing action of adrenaline in endotoxin-treated animals, Federation Proc. 15: 618, 1956. Google Scholar126. KurlandFreedberg GSAS: The potentiating effect of ACTH and of cortisone on pressor response to intravenous infusion of 1-nor-epinephrine, Proc. Soc. Exper. Biol. and Med. 78: 28, 1951. CrossrefMedlineGoogle Scholar127. Long CN: The adrenal mechanism in relation to shock, from Symposium on Shock, Army Medical Service Graduate School, May, 1951. Google Scholar128. HowardDeBakey JMME: The treatment of hemorrhagic shock with cortisone and vitamin B12 , Surgery 30: 161, 1950. Google Scholar129. FineFischmanFrank JJHA: The effect of adrenal cortical hormones in hemorrhage and shock, Surgery 12: 1, 1942. Google Scholar130. SwingleOvermanRemingtonKleinbergEyersole WWRRJWWWJ: Ineffectiveness of adrenal cortex preparations in the treatment of experimental shock in non-adrenalectomized dogs, Am. J. Physiol. 139: 481, 1943. CrossrefGoogle Scholar131. FrankJacobWeizelReinerCohenFine HASHALRJ: Effects of ACTH and cortisone in experimental hemorrhagic shock, Am. J. Physiol. 180: 282, 1955. CrossrefMedlineGoogle Scholar132. HuizengaBrofmanWiggers KABLCJ: Ineffectiveness of adrenocortical preparations in standardized hemorrhagic shock, Proc. Soc. Exper. Biol. and Med. 52: 77, 1943. CrossrefGoogle Scholar133. RemingtonHamiltonCaddellBoydWheelerPickering JWWFHMGHNCRW: Vasoconstriction as a precipitating factor in traumatic shock in the dog, Am. J. Physiol. 161: 125, 1950. CrossrefMedlineGoogle Scholar134. WangOverman SCRR: A neurogenic factor in experimental traumatic shock: a summary of recent studies including observations on procainized and spinal dogs, Ann. Surg. 129: 207, 1949. CrossrefMedlineGoogle Scholar135. Wang SC: The importance of the afferent nervous factor in experimental traumatic shock: the effect of chronic deafferentiation, Am. J. Physiol. 148: 547, 1947. CrossrefMedlineGoogle Scholar136. WiggersIngrahamRoemhildGoldberg HCRCFH: Vasoconstriction and the development of irreversible hemorrhagic shock, Am. J. Physiol. 153: 511, 1948. CrossrefMedlineGoogle Scholar137. WiggersGoldbergRoemhildIngraham HCHFRC: Impending hemorrhagic shock and the course of events following administration of Dibenamine, Circulation 2: 179, 1950. CrossrefMedlineGoogle Scholar138. FreemanShawSynder NJLJC: The peripheral blood flow in surgical shock, J. Clin. Investigation 15: 651, 1936. CrossrefMedlineGoogle Scholar139. RemingtonWheelerBoydCaddell JWHCGHHM: Protective action of Dibenamine after hemorrhage and after muscle trauma, Proc. Soc. Exper. Biol. and Med. 69: 150, 1948. CrossrefMedlineGoogle Scholar140. FreemanShafferShecterHolling NSAAEHE: Effect of total sympathectomy on the occurrence of shock from hemorrhage, J. Clin. Investigation 17: 359, 1938. CrossrefMedlineGoogle Scholar141. BaezZweifachShorr SBWE: Protective action of Dibenamine against the fatal outcome of hemorrhagic and traumatic shock in rats, Federation Proc. 11: 7, 1952. Google Scholar142. BeckRedlick LVTF: Chlorpromazine counteraction of trauma-induced death, Proc. Soc. Exper. Biol. and Med. 92: 851, 1956. CrossrefMedlineGoogle Scholar143. Fournel J: The effect of the hydrochloride of 10-chloro-3-phenothiazine on experimental hemorrhagic shock in dogs, Compt. rend. Soc. de biol. 146: 561, 1952. MedlineGoogle Scholar144. CourvoiserFournelDucrotKolskyKoetsche SJRMP: Pharmacodynamic properties of 3 chloro-10 phenothiazine hydrochloride, Arch. internat. pharmacodyn. et de thérap. 92: 305, 1953. MedlineGoogle Scholar145. Baez S: Influence of adrenergic, cholinergic, and ganglionic blocking agents in experimental shock, in Shock and circulatory homeostasis, Transactions of the Fifth Conference, 1955, The Josiah Macy, Jr. Foundation, New York. Google Scholar146. DeBakey ME: Influence of hypothermia: chlorpromazine, in Shock and circulatory homeostasis, Transactions of the Fifth Conference, 1955, The Josiah Macy, Jr. Foundation, New York. Google Scholar147. Shorr E: Preservation of the hepatic ferritin systems and protection against shock by N-(2-chloroethyl)-N-(cyclohexylmethyl)-ethylamine hydrochloride (G-D 131), in Shock and circulatory homeostasis, Transactions of the Fifth Conference, 1955, The Josiah Macy, Jr. Foundation, New York. Google Scholar148. HersheyLanzaRovenstineBaez SGSEAS: Protection against shock induced by mesenteric artery occlusion, Federation Proc. 17: 377, 1958. Google Scholar149. Zweifach BW: Basic mechanisms in peripheral vascular homeostasis, in Kidney, Transactions of the Third Conference, 1949, The Josiah Macy, Jr. Foundation, New York. Google Scholar This content is PDF only. To continue reading please click on the PDF icon. Author, Article, and Disclosure InformationAffiliations: Baltimore, Maryland*Received for publication August 4, 1958.From the Departments of Medicine and Microbiology, School of Medicine, University of Maryland, Baltimore, Maryland.Requests for reprints should be addressed to Sheldon E. Greisman, M.D., Assistant Professor of Medicine, Department of Experimental Surgery, University of Maryland School of Medicine, Lombard and Greene Streets, Baltimore 1, Maryland. PreviousarticleNextarticle Advertisement FiguresReferencesRelatedDetails Metrics Cited byThe Treatment of Acute Meningococcal Infection in Adults A ReappraisalSTUART LEVIN, M. B. PAINTERShock in infectious diseasesBlood pressure and urinary responses to increasing concentrations of norepinephrine in sequential hemorrhageAcute myocardial infarction in a city hospitalSchock und Kollaps 1 May 1959Volume 50, Issue 5Page: 1092-1114KeywordsAtherosclerosisBlood pressureDrug therapyHypoxiaIschemiaMicrobiologyShockThrombosisVasopressor therapyVasopressors ePublished: 1 December 2008 Issue Published: 1 May 1959 PDF downloadLoading ...
Referência(s)