Artigo Acesso aberto Revisado por pares

Chromogranin A, the major catecholamine storage vesicle soluble protein. Multiple size forms, subcellular storage, and regional distribution in chromaffin and nervous tissue elucidated by radioimmunoassay.

1984; Elsevier BV; Volume: 259; Issue: 5 Linguagem: Inglês

10.1016/s0021-9258(17)43286-8

ISSN

1083-351X

Autores

Daniel T. O’Connor, Ronald P. Frigon,

Tópico(s)

Lipid Membrane Structure and Behavior

Resumo

Chromogranin A (CgA), the major catecholamine storage vesicle (CSV) soluble protein, may index exocytotic sympathoadrenal secretion. To explore CgA in adrenergic tissues, we developed a radioimmunoassay for bovine CgA. Within adrenal medulla CSV, several minor chromogranins had similar amino acid compositions and peptide maps to that of CgA and also showed parallel, partial cross-reactivity in the CgA radioimmunoassay. CgA immunoreactivity represented 7 +/- 1% of total adrenal medulla cell protein and was localized to adrenal CSV, representing 46 +/- 2% of CSV soluble protein. In brain, there was 1000-fold less CgA than in adrenal medulla, with a widespread regional distribution (maximal in neocortex) and an unusual subcellular distribution (maximal in cytosol), both of which differ from reported catecholamine distribution. Brain chromogranin immunoreactivity also had a lower Stokes radius than adrenal CgA. Sympathetic nerve and serum had 6,000-fold and 30,000-fold less CgA than that in adrenal medulla. The results suggest a family of adrenal medulla chromogranins, similar structurally and immunoligically. Adrenal medulla and brain chromogranin differ in concentration, subcellular localization, and molecular size. Finally, CgA in serum may provide a useful tool for sympathoadrenal studies in intact organisms.

Referência(s)
Altmetric
PlumX