ERp57 and PDI: multifunctional protein disulfide isomerases with similar domain architectures but differing substrate–partner associationsThis paper is one of a selection of papers published in this Special Issue, entitled CSBMCB — Membrane Proteins in Health and Disease.
2006; NRC Research Press; Volume: 84; Issue: 6 Linguagem: Inglês
10.1139/o06-186
ISSN1208-6002
AutoresPekka Määttänen, Guennadi Kozlov, Kalle Gehring, David Y. Thomas,
Tópico(s)Transgenic Plants and Applications
ResumoSecretory proteins become folded and acquire stabilizing disulfide bonds in the endoplasmic reticulum (ER). Correct disulfide bond formation is a key step in ER quality control (ERQC). Proteins with incorrect disulfide bonds are recognized by the quality control machinery and are retrotranslocated into the cytosol where they are degraded by the proteasome. The mammalian ER contains 17 disulfide isomerases and at least one of them, ERp57, works in conjunction with the ER lectin-like chaperones calnexin and calreticulin. The targeting of ERp57 to calnexin-calreticulin is mediated by its noncatalytic b' domain, and analogous domains in other disulfide isomerases likely determine their substrate and partner preferences. This review discusses some explanations for the multiplicity of disulfide isomerases and highlights structural differences in the b' domains of PDI and ERp57 as an example of how noncatalytic domains define specialized roles in oxidative folding.
Referência(s)