Cystine metabolism in human fibroblasts. Comparison of normal, cystinotic, and gamma-glutamylcysteine synethetase-deficient cells.
1976; Elsevier BV; Volume: 251; Issue: 14 Linguagem: Inglês
10.1016/s0021-9258(17)33294-5
ISSN1083-351X
AutoresRobert G. Oshima, William J. Rhead, Jess G. Thoene, Jerry A. Schneider,
Tópico(s)Sulfur Compounds in Biology
ResumoIncubation of normal human skin fibroblasts or fibroblasts derived from patients with erythrocyte deficiency of gamma-glutamylcysteine synthetase (gamma-glutamylcysteine synthetase-deficient) in culture medium containing L-[35S]cystine resulted in incorporation of radioactivity into protein, cysteine, and glutathione, gamma-Glutamylcysteine synthetase-deficient fibroblasts synthesized glutathione from [35S]cystine at 30% the rate of normal cells and contained 30% the normal amount of glutathione. Cystinotic fibroblasts incorporated [35S]cystine into the large intracellular cystine pool not found in normal or gamma-glutamylcysteine synthetase-deficient cells and also appeared to synthesize glutathione more slowly than normal cells. However, the radioactivity recovered as cystine was reduced greatly and the rate of [35S]cystine incorporation into glutathione increased if cystinotic cells were first depleted of their intracellular cystine pool before incubation in [35S]cystine. This suggests that the apparent reduced rate of glutathione synthesis observed in untreated cystinotic cells was a secondary effect caused by dilution of the [35S]cystine by the large pool of nonradioactive cystine. Cystinotic cells depleted of cystine by treatment with mercaptoethylamine reaccumulate 30 to 50% of their initial cystine in 24 hours in the absence of extracellular cystine. Both normal and cystinotic cells lose more than 90% of their intracellular glutathione in 24 hours in cystine-free medium. Both cell types can reutilize cysteine from glutathione for protein synthesis.
Referência(s)