Capítulo de livro Revisado por pares

Highly siderophile elements: Constraints on Earth accretion and early differentiation

2005; American Geophysical Union; Linguagem: Inglês

10.1029/160gm13

ISSN

2328-8779

Autores

K. Righter,

Tópico(s)

earthquake and tectonic studies

Resumo

Highly Siderophile Elements: Constraints on Earth Accretion and Early Differentiation Kevin Righter, Kevin Righter NASA Johnson Space Center, Houston, TexasSearch for more papers by this author Kevin Righter, Kevin Righter NASA Johnson Space Center, Houston, TexasSearch for more papers by this author Book Editor(s):Robert D. Van Der Hilst, Robert D. Van Der HilstSearch for more papers by this authorJay D. Bass, Jay D. BassSearch for more papers by this authorJan Matas, Jan MatasSearch for more papers by this authorJeannot Trampert, Jeannot TrampertSearch for more papers by this author First published: 01 January 2005 https://doi.org/10.1029/160GM13Citations: 5Book Series:Geophysical Monograph Series AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary This chapter contains sections titled: Introduction Hse in the Primitive Upper Mantle and Earth Accretion Models Early Earth Layering or Fractionation: A Control on Mantle os Isotopic Values? Summary and Future References Y Abe, E Ohtani, T Okuchi, K Righter, M. J. Drake, Water in the early Earth, Origin of the Earth and Moon, R. M. Canup, K. Righter, 413– 434, Univ. of Arizona Press, Tucson, 2000. Google Scholar C. B. Agee, D. Walker, Mass balance and phase density constraints on early differentiation of chondritic mantle, Earth Planet. Sci. Lett., 90, 144– 156, 1988. 10.1016/0012-821X(88)90097-0 CASWeb of Science®Google Scholar C. B. Agee, D. Walker, Olivine flotation in mantle melt, Earth Planet. Sci. Lett., 114, 315– 324, 1993. 10.1016/0012-821X(93)90033-6 CASWeb of Science®Google Scholar R. J. Arculus, Oxidation status of the mantle: past and present, Ann. Rev. Earth Planet. Sci., 13, 75– 95, 1985. 10.1146/annurev.ea.13.050185.000451 CASWeb of Science®Google Scholar J. Amosse, M. Alibert, W. Fischer, M. Piboule, Experimental study of the solubility of platinum and iridium in basic silicate melts-implications for the differentiation of the platinum group elements during magmatic processes, Chem. Geol., 81, 45– 53, 1990. 10.1016/0009-2541(90)90038-9 CASWeb of Science®Google Scholar C. Ballhaus, D. J. Ellis, Mobility of core melts during Earth's accretion, Earth Planet. Sci. Lett., 143, 137– 145, 1996. 10.1016/0012-821X(96)00135-5 CASWeb of Science®Google Scholar M. G. Barth, R. L. Rudnick, R. W. Carlson, I. Horn, W. F. McDonough, Re-Os and U-Pb geochronological constraints on the eclogite-tonalite connection in the Archean Man Shield, West Africa, Precambrian Res., 118, 267– 283, 2002. 10.1016/S0301-9268(02)00111-0 CASWeb of Science®Google Scholar V. C. Bennett, T. M. Esat, M. D. Norman, Two mantle-plume components in Hawaiian picrites inferred from correlated Os-Pb isotopes, Nature, 381, 221– 225, 1996. 10.1038/381221a0 CASWeb of Science®Google Scholar V. C. Bennett, A. P. Nutman, T. M. Esat, Constraints on mantle evolution from 187Os/188Os isotopic compositions of Archean ultramafic rocks from southern West Greenland (3.8 Ga) and Western Australia (3.46 Ga), Geochim. Cosmochim. Acta, 66, 2615– 2630, 2002. 10.1016/S0016-7037(02)00862-1 CASWeb of Science®Google Scholar N. I. Bezmen, M. Asif, G. E. Brugmann, I. M. Romanenko, A. J. Naldrett, Distribution of Pd, Rh, Ru, Ir, Os, and Au between sulfide and silicate metals, Geochim. Cosmochim. Acta, 58, 1251– 1260, 1994. 10.1016/0016-7037(94)90379-4 CASWeb of Science®Google Scholar F. Birch, The energetics of core formation, Jour. Geophys. Res., 70, 6217– 6221, 1965. 10.1029/JZ070i024p06217 Web of Science®Google Scholar A. Borisov, H. Palme, Experimental determination of the solubility of Au in silicate melts, Mineral. Petrol., 56, 297– 312, 1996. 10.1007/BF01162608 CASWeb of Science®Google Scholar A. Borisov, H. Palme, Experimental determination of the solubility of platinum in silicate melts, Geochim. Cosmochim. Acta, 61, 4349– 4357, 1997. 10.1016/S0016-7037(97)00268-8 CASWeb of Science®Google Scholar A. Borisov, H. Palme, Solubilities of noble metals in Fe-con-taining silicate melts as derived from experiments in Fe-free systems, Amer. Mineral., 85, 1665– 1677, 2000. 10.2138/am-2000-11-1209 CASWeb of Science®Google Scholar A. Borisov, H. Palme, B. Spettel, Solubility of palladium in silicate melts: implications for core formation in the Earth, Geochim. Cosmochim. Acta, 58, 705– 716, 1994. 10.1016/0016-7037(94)90500-2 CASWeb of Science®Google Scholar A. Brandon, R. J. Walker, J. W. Morgan, M. D. Norman, H. M. Prichard, Coupled 186Os and 187Os evidence for core-mantle interaction, Science, 280, 1570– 1573, 1998. 10.1126/science.280.5369.1570 CASPubMedWeb of Science®Google Scholar A. D. Brandon, M. D. Norman, R. J. Walker, J. W. Morgan, 186Os-_187Os systematics of Hawaiian picrites, Earth Planet. Sci. Lett., 174, 25– 42, 1999. 10.1016/S0012-821X(99)00251-4 CASWeb of Science®Google Scholar A. D. Brandon, J. E. Snow, R. J. Walker, J. W. Morgan, T. D. Mock, 190Pt-186Os and 187Re-187Os systematics of abyssal perido-tites, Earth Planet. Sci. Lett., 177, 319– 335, 2000. 10.1016/S0012-821X(00)00044-3 CASWeb of Science®Google Scholar A. Brandon, R. J. Walker, I. S. Puchtel, H. Becker, M. Humayun, S. Revillon, 186Os-187Os systematics of Gorgona Island komatiites: implications for early growth of the inner core, Earth Planet. Sci. Lett., 206, 411– 426, 2003. 10.1016/S0012-821X(02)01101-9 CASWeb of Science®Google Scholar J. M. Brenan, McDonough, W. F. Dalpe, Experimental constraints on the partitioning of rhenium and some platinum-group elements between olivine and silicate melt, Earth Planet. Sci. Lett., 212, 135– 150, 2003. 10.1016/S0012-821X(03)00234-6 CASWeb of Science®Google Scholar D. Bruhn, N. Groebner, D. L. Kohlstedt, An interconnected network of core-forming melts produced by shear deformation, Nature, 403, 883– 86, 2000. 10.1038/35002558 CASPubMedWeb of Science®Google Scholar H. P. Bunge, M. A. Richards, C. Lithgow-Bertelloni, J. R. Baumgardner, S. P. Grand, B. A. Romanowicz, Time scales and heterogeneous structure in geodynamic Earth models, Science, 280, 91– 95, 1998. 10.1126/science.280.5360.91 CASPubMedWeb of Science®Google Scholar A. J. Campbell, M. Humayun, Trace element microanalysis in iron meteorites by laser ablation ICP-MS, Anal. Chem., 71, 939– 946, 1999. 10.1021/ac9808425 CASPubMedWeb of Science®Google Scholar A. J. Campbell, M. Humayun, A. Meibom, A. N. Krot, Origin of Zoned Fe,Ni Metal Grains in QUE 94411, Geochim. Cosmochim. Acta, 65, 163– 180, 2001. 10.1016/S0016-7037(00)00526-3 CASWeb of Science®Google Scholar C. J. Capobianco, R. L. Hervig, M. J. Drake, Experiments on crystal/liquid partitioning of Ru, Rh and Pd for magnetite and hematite solid solutions crystallized from silicate melt, Chemical Geology, 113, 23– 43, 1994. 10.1016/0009-2541(94)90003-5 CASWeb of Science®Google Scholar J. C. Castle, R. D. van der Hilst, Using ScP precursors to search for mantle structures beneath 1800 km depth, Geophys. Res. Lett., 30, 1422, 2003. 10.1029/2002GL016023 Web of Science®Google Scholar J. C. Castle, R. D. van der Hilst, Searching for seismic scattering off mantle interfaces between 800 km and 2000 km depth, Jour. Geophys. Res., 108, 2095, 2003. 10.1029/2001JB000286 Web of Science®Google Scholar N. L. Chabot, A. J. Campbell, J. H. Jones, M. Humayun, C. B. Agee, An experimental test of Henry's Law in solid metal-liquid metal systems with implications for iron meteorites, Met. Planet. Sci., 38, 181– 196, 2003. 10.1111/j.1945-5100.2003.tb00259.x CASWeb of Science®Google Scholar N. L. Chabot, A. J. Campbell, M. Humayun, Solid metal-liquid metal partitioning of Pt, Re, and Os: the effect of carbon, Lunar Planet. Sci., XXXV, 1008, 2004. Google Scholar C. L. Chou, Fractionation of siderophile elements in the Earth's upper mantle, Proc. Lunar Planet. Sci. Conf. 9th, 219– 230, 1978. CASGoogle Scholar C.-L. Chou, D. M. Shaw, J. H. Crocket, Siderophile trace elements in the Earth's oceanic crust and upper mantle, Jour. Geophys. Res., 88, Supplement, A507– A518, 1983. 10.1029/JB088iS02p0A507 CASGoogle Scholar A. Coradini, C. Federico, P. Lanciano, Earth and Mars: early thermal profiles, Phys. Earth Planet. Int., 31, 145– 160, 1983. 10.1016/0031-9201(83)90106-1 Web of Science®Google Scholar E. A. Cottrell, D. Walker, A new look at Pt solubility in silicate liquid, Lunar Planet. Sci., XXXIII, 1274, 2002. Google Scholar J. H. Crocket, Platinum-Group Elements in mafic and Ultramafic Rocks: A Survey, Canadian Mineralogist, 17, 391– 402, 1979. CASWeb of Science®Google Scholar J. H. Crocket, M. E. Fleet, W. E. Stone, Experimental partitioning of osmium, iridium and gold between basalt melt and sulphide liquid at 1300°C, Austral. Jour. Earth Sci., 39, 427– 432, 1992. 10.1080/08120099208728035 Web of Science®Google Scholar J. H. Crocket, M. E. Fleet, W. E. Stone, Implications of composition for experimental partitioning of platinum-group elements and gold between sulfide liquid and basalt melt: The significance of nickel content, Geochim. Cosmochim. Acta, 61, 4139– 4149, 1997. 10.1016/S0016-7037(97)00234-2 CASWeb of Science®Google Scholar L. R. Danielson, T. G. Sharp, and R. L. Hervig, Implications for core formation from high pressure and temperature partitioning studies of Au, Earth Planet. Sci. Lett., in review. Google Scholar A. Delsemme, The origin of the atmosphere and the oceans. In Comets and the Origin and Evolution of Life, P. J. Thomas, C. F. Chyba, CP. McKay, 296, New York: Springer-Verlag., 1997. Google Scholar M. J. Drake, Geochemical constraints on the early thermal history of the Earth, Z. Naturforsch., 44a, 883– 890, 1989. Google Scholar G. Dreibus, H. Palme, Cosmochemical constraints on the sulfur content in the Earth's core, Geochim. Cosmochim. Acta, 60, 1125– 1130, 1996. 10.1016/0016-7037(96)00028-2 CASWeb of Science®Google Scholar D. S. Ebel, L. Grossman, Condensation in a Model Chicxulub Fireball, Lunar Planet. Sci. Conf, XXX, 1906, 1999. Google Scholar D. H. Eggler, J. P. Lorand, Sulfides, diamonds and mantle fO2 , Proc. 5th International Kimberlite Conf., 160– 169, 1995. Google Scholar W. Ertel, H. St. C. O'Neill, P. J. Sylvester, D. B. Dingwell, Solubilities of Pt and Rh in a haplobasaltic silicate melt at 1300 °C, Geochim. Cosmochim Acta, 63, 2439– 2449, 1999. 10.1016/S0016-7037(99)00136-2 CASWeb of Science®Google Scholar W. Ertel, M. J. Walter, P. J. Sylvester, M. J. Drake, Experimentally determined solubilities of Pt up to 90 kb and 1850 °C, Lunar Planet. Sci., XXXII, 1011, 2001. Google Scholar Y. Fei, C. M. Bertka, L. W. Finger, High pressure iron-sulfur compound, Fe3S2, and melting relations in the Fe-FeS system, Science, 275, 1621– 1624, 1997. 10.1126/science.275.5306.1621 CASPubMedWeb of Science®Google Scholar A. A. Finnerty, F. R. Boyd, Evaluation of thermobarometers for garnet peridotites, Geochim. Cosmochim Acta, 48, 15– 27, 1984. 10.1016/0016-7037(84)90346-6 CASWeb of Science®Google Scholar F. M. Flasar, F. Birch, Energetics of core formation: A correction, Jour. Geophys. Res., 78, 6101– 6104, 1973. 10.1029/JB078i026p06101 Web of Science®Google Scholar M. E. Fleet, R. G. Tronnes, W. E. Stone, Partitioning of Platinum Group Elements in the Fe-O-S System to 11 GPa and Their Fractionation in the Mantle and Meteorites, Jour. Geophys. Res., 96, 21,949– 21,958, 1991a. 10.1029/91JB02172 CASWeb of Science®Google Scholar M. E. Fleet, W. E. Stone, J. H. Crocket, Partitioning of palladium, iridium, and platinum between sulfide liquid and basalt melt: Effects of melt composition, concentration, and oxygen fugacity, Geochim. Cosmochim. Acta, 55, 2545– 2554, 1991b. 10.1016/0016-7037(91)90372-C CASWeb of Science®Google Scholar M. E. Fleet, W. E. Stone, Partitioning of platinum-group elements in the Fe-Ni-S system and their fractionation in nature, Geochim. Cosmochim. Acta, 55, 245– 253, 1991. 10.1016/0016-7037(91)90415-2 CASWeb of Science®Google Scholar M. E. Fleet, J. H. Crocket, W. E. Stone, Partitioning of platinum-group elements (Os, Ir, Ru, Pt, Pd) and gold between sulfide liquid and basalt melt, Geochim. Cosmochim. Acta, 60, 2397– 2412, 1996. 10.1016/0016-7037(96)00100-7 CASWeb of Science®Google Scholar M. E. Fleet, M. Liu, J. H. Crocket, Partitioning of trace amounts of highly siderophile elements in the Fe-Ni-S system and their fractionation in nature, Geochim. Cosmochim Acta, 63, 2611– 2622, 1999. 10.1016/S0016-7037(99)00112-X CASWeb of Science®Google Scholar S. Fortenant, D. Gunther, D. B. Dingwell, D. C. Rubie, Temperature dependence of Pt and Rh solubilities in a haplobasaltic melt, Geochim. Cosmochim Acta, 67, 123– 131, 2003. 10.1016/S0016-7037(02)01047-5 Web of Science®Google Scholar S. Fortenfant, D. C. Rubie, J. Reid, C. Dalpe, F. Capmas, C. K. Gessmann, Partitioning of Re and Os between liquid metal and magnesiowustite at high pressure, Phys. Earth Planet. Int., 139, 77– 91, 2003. 10.1016/S0031-9201(03)00146-8 CASWeb of Science®Google Scholar G. A. Gaetani, T. L. Grove, Wetting of mantle olivine by sulfide melt: implications for Re/Os ratios in mantle peridotite and late-stage core formation, Earth Planet. Sci. Lett., 169, 147– 163, 1999. 10.1016/S0012-821X(99)00062-X CASWeb of Science®Google Scholar K. Gueddari, M. Piboule, J. Amosse, Differentiation of platinum group elements (PGE) and of gold during partial melting of peridotites in the lherzolitic massifs of the Betico-Rifean range (Ronda and Beni Bousera), Chem. Geol., 134, 181– 197, 1996. 10.1016/S0009-2541(96)00085-X CASWeb of Science®Google Scholar M. Handler, V. C. Bennett, Behavior of platinum group elements in the subcontinental mantle of eastern Australia during variable metasomatism and melt depletion, Geochim. Cosmochim. Acta, 63, 3597– 3618, 1999. 10.1016/S0016-7037(99)00143-X CASWeb of Science®Google Scholar E. H. Hauri, S. R. Hart, Re-Os isotope systematics of HIMU and EMII oceanic island basalts from the south Pacific Ocean, Earth Planet. Sci. Lett., 114, 353– 371, 1993. 10.1016/0012-821X(93)90036-9 CASWeb of Science®Google Scholar E. H. Hauri, S. R. Hart, Rhenium abundances and systematics in oceanic basalts, Chem. Geol., 139, 185– 205, 1997. 10.1016/S0009-2541(97)00035-1 CASWeb of Science®Google Scholar E. Hill, B. J. Wood, J. D. Blundy, The effect of Ca-Tscher-maks component on trace element partitioning between clino-pyroxene and silicate melt, Lithos, 53, 203– 215, 2000. 10.1016/S0024-4937(00)00025-6 CASWeb of Science®Google Scholar V. J. Hillgren, C. K. GeBmann, J. Li, An experimental perspective on the light element in Earth's core, Origin of the Earth and Moon, R. M. Canup, K. Righter, 245– 264, Univ. of Arizona Press, Tucson, 2000. Google Scholar A. W. Hofmann, Mantle geochemistry: the message from oceanic volcanism, Nature, 385, 219– 229, 1997. 10.1038/385219a0 CASWeb of Science®Google Scholar A. Holzheid, P. J. Sylvester, H. St. C. O'Neill, D. C. Rubie, H. Palme, Evidence for a late chondritic veneer in the Earth's mantle from high pressure partitioning of palladium and platinum, Nature, 406, 396– 399, 2000. 10.1038/35019050 PubMedWeb of Science®Google Scholar C. J. Hostetler, M. J. Drake, On the early global melting of the terrestrial planets, Proc. Lunar. Planet. Sci. Conf. 11th, 1915– 1929, 1980. Google Scholar W. Hsu, G. R. Huss, G. J. Wasserburg, Ion probe measurements of Os, Ir, Pt, Au in individual phases of iron meteorites, Geochim. Cosmochim. Acta, 64, 1133– 1147, 2000. 10.1016/S0016-7037(99)00378-6 CASWeb of Science®Google Scholar M. Humayun, L Qin, M. D. Norman, Geochemical evidence for excess iron in the mantle beneath Hawaii, Science, 306, 91– 94, 2004. 10.1126/science.1101050 CASPubMedWeb of Science®Google Scholar E. Ito, T. Katsura, T. Suzuki, Metal/silicate partitioning of Mn, Co, and Ni at high pressures and high temperatures and implications for core formation in a deep magma ocean, Properties of Earth and Planetary Materials at High Pressure and Temperature, Geophysical Monograph, 101, : M. H. Manghnani, 215– 225, AGU, Washington, D.C., 1998. 10.1029/GM101p0215 Web of Science®Google Scholar E. Jagoutz, H. Palme, H. Baddenhausen, K. Blum, M. Cendales, The abundances of major, minor and trace elements in the Earth's mantle as derived from primitive ultramafic nodules, Proc. Lunar Planet. Sci. Conf. 10th, 2031– 2050, 1979. CASGoogle Scholar D. Jana, D. Walker, The influence of sulfur on partitioning of siderophile elements, Geochim. Cosmochim. Acta, 61, 5255– 5277, 1997. 10.1016/S0016-7037(97)00307-4 CASWeb of Science®Google Scholar J. H. Jones, M. J. Drake, Geochemical constraints on core formation in the Earth, Nature, 322, 221– 228, 1986. 10.1038/322221a0 CASWeb of Science®Google Scholar J. H. Jones, H. Palme, Geochemical constraints on the origin of the Earth and Moon, Origin of the Earth and Moon, R. M. Canup, K. Righter, 197– 216, Univ. of Arizona Press, Tucson, 2000. Google Scholar J. H. Jones, D. Walker, Partitioning of siderophile elements in the Fe-Ni-S system: 1 bar to 80 kb, Earth Planet. Sci. Lett., 105, 127– 133, 1991. 10.1016/0012-821X(91)90125-2 CASWeb of Science®Google Scholar H. Karason, R. D. van der Hilst, Tomographic imaging of the lowermost mantle with differential times of refracted and diffracted core phases (PKP, Pdiff, Jour. Geophys. Res., 106, 6569, 2001. 10.1029/2000JB900380 Web of Science®Google Scholar W. M. Kaula, Thermal evolution of Earth and Moon growing by planetesimal impacts, Jour. Geophys. Res., 84, 999– 1008, 1979. 10.1029/JB084iB03p00999 Web of Science®Google Scholar L. H. Kellogg, B. H. Hager, R. D. Van der Hilst, Compositional stratification in the deep mantle, Science, 283, 1881– 84, 1999. 10.1126/science.283.5409.1881 CASPubMedWeb of Science®Google Scholar C. Lazar, D. Walker, R. J. Walker, Experimental partitioning of Tc, Mo, Ru, and Re between solid and liquid during crystallization in Fe-Ni-S, Geochim. Cosmochim. Acta, 68, 643– 651, 2004. 10.1016/S0016-7037(03)00449-6 CASWeb of Science®Google Scholar J. Li, C. B. Agee, Geochemistry of mantle-core formation at high pressure, Nature, 381, 686– 689, 1996. 10.1038/381686a0 CASWeb of Science®Google Scholar J. Li, Y. Fei, Experimental Constraints on Core Composition, Mantle and Core, Treatise on Geochemistry, 2, 521– 546, Elsevier, New York, 2003. Web of Science®Google Scholar J. Li, H. K. Mao, Y. Fei, E. Gregoryanz, M. Eremets, C. S. Zha, Compression of Fe3C to 30 GPa at room temperature, Phys. Chem. Mineral., 29, 166– 169, 2002. 10.1007/s00269-001-0224-4 CASWeb of Science®Google Scholar J.-P. Lorand, O. Alard, Platinum group element abundances in the upper mantle: new constraints from in situ and whole rock analyses of Massif Central xenoliths (France, Geochim. Cosmochim. Acta, 65, 2789– 2806, 2001. 10.1016/S0016-7037(01)00627-5 CASWeb of Science®Google Scholar J.-P. Lorand, L. Pattou, M. Gros, Fractionation of platinum group elements in the upper mantle: a detailed study in Pyrenean orogenic lherzolites, Jour. Petrol., 40, 957– 981, 1999. 10.1093/petroj/40.6.957 CASWeb of Science®Google Scholar J.-P Lorand, G. Schmidt, H. Palme, K.-L. Kratz, Highly siderophile elements geochemistry of the Earth's mantle: new data for the Lanzo (Italy) and Ronda (Spain) orogenic peridotite bodies, Lithos, 53, 149– 164, 2000. 10.1016/S0024-4937(00)00017-7 CASWeb of Science®Google Scholar E. A. Mathez, C. L. Peach, Geochemistry of platinum group elements in mafic and ultramafic rocks, Ore Deposition Associated with Magmas, Reviews in Economic Geology, 4, J. A. Whitney, A. J. Naldrett, 33– 41, 1990. Google Scholar W. F. McDonough, S.-s. Sun, The composition of the Earth. Chemical, Geology, 120, 223– 253, 1995. CASWeb of Science®Google Scholar A. Meibom, R. Frei, Evidence for an ancient osmium isotopic reservoir in Earth, Science, 296, 516– 519, 2002. 10.1126/science.1069119 CASPubMedWeb of Science®Google Scholar T. Meisel, R. J. Walker, A. J. Irving, J-P. Lorand, Osmium isotopic compositions of mantle xenoliths: a global perspective, Geochim. Cosmochim. Acta, 65, 1311– 23, 2001. 10.1016/S0016-7037(00)00566-4 CASWeb of Science®Google Scholar A. H. Menzies, R. W. Carlson, S. B. Shirey, J. J. Gurney, Re-Os systematics of diamond-bearing eclogites from the Newlands kimberlite, Lithos, 71, 323– 336, 2003. 10.1016/S0024-4937(03)00119-1 CASWeb of Science®Google Scholar W. G. Minarik, F. J. Ryerson, E. B. Watson, Textural entrapment of core-forming melts, Science, 272, 530– 532, 1996. 10.1126/science.272.5261.530 CASWeb of Science®Google Scholar J. W. Morgan, Ultramafic xenoliths: clues to Earth's late accretion-ary history, Jour. Geophys. Res., 91, 12375– 12387, 1986. 10.1029/JB091iB12p12375 Web of Science®Google Scholar J. W. Morgan, G. A. Wandless, R. K. Petrie, A. J. Irving, Composition of the earth's upper mantle. I-Siderophile trace elements in ultramafic nodules, Tectonophysics, 75, 47– 67, 1981. 10.1016/0040-1951(81)90209-2 CASWeb of Science®Google Scholar H. St. C O'Neill, The origin of the Moon and the early history of the Earth—A chemical model. Part 2: The Earth, Geochim. Cosmochim. Acta, 55, 1159– 72, 1991. 10.1016/0016-7037(91)90169-6 CASWeb of Science®Google Scholar E. Ohtani, H. Yurimoto, S. Seto, Element partitioning between metallic liquid, silicate liquid, and lower-mantle minerals: implications for core formation of the Earth, Phys. Earth Planet. Int., 100, 97– 114, 1997. 10.1016/S0031-9201(96)03234-7 CASWeb of Science®Google Scholar L. Pattou, J. Lorand, M. Gros, Nonchronditic platinum group element ratios in the Earth's mantle, Nature, 379, 712– 715, 1996. 10.1038/379712a0 CASWeb of Science®Google Scholar C. L. Peach, E. A. Mathez, R. R. Keays, Sulfide melt-silicate melt distribution coefficients for noble metals and other chalco-phile elements as deduced from MORB: Implications for partial melting, Geochim. Cosmochim. Acta, 54, 3379– 3389, 1990. 10.1016/0016-7037(90)90292-S CASWeb of Science®Google Scholar C. L. Peach, E. A. Mathez, R. R. Keays, S. J. Reeves, Experimentally determined sulfide-melt silicate melt partition coefficients for iridium and palladium, Chem. Geol., 117, 361– 377, 1994. 10.1016/0009-2541(94)90138-4 CASWeb of Science®Google Scholar D. G. Pearson, G. A. Snyder, S. B. Shirey, L. A. Taylor, R. W. Carlson, N. V. Sobolov, Archean Re-Os age for Siberian eclogites and constraints on Archean tectonics, Nature, 374, 711– 713, 1995. 10.1038/374711a0 CASWeb of Science®Google Scholar I. S. Puchtel, M. Humayun, Platinum group elements in Kos-tomuksha komatiites and basalts: implications for oceanic crust recycling and core-mantle interaction, Geochim. Cosmochim. Acta, 64, 4227– 4242, 2000. 10.1016/S0016-7037(00)00492-0 CASWeb of Science®Google Scholar K. Righter, R. T. Downs, Crystal structures of Re- and PGE-bearing magnesioferrite spinels: implications for accretion, impacts and the deep mantle, Geophys. Res. Lett., 28, 619– 22, 2001. 10.1029/2000GL012184 CASWeb of Science®Google Scholar K. Righter, M. J. Drake, Metal-silicate equilibrium in a homogeneously accreting Earth: new results for Re, Earth Planet. Sci. Lett., 146, 541– 553, 1997. 10.1016/S0012-821X(96)00243-9 CASWeb of Science®Google Scholar K. Righter, E. H. Hauri, Compatibility of Rhenium in Garnet During Mantle Melting and Magma Genesis, Science, 280, 1737– 1741, 1998. 10.1126/science.280.5370.1737 CASPubMedWeb of Science®Google Scholar K. Righter, M. J. Drake, G. Yaxley, Prediction of siderophile element metal-silicate partition coefficients to 20 GPa and 2800°C: the effect of pressure, temperature, fO2 and silicate and metallic melt composition, Phys. Earth Planet. Int., 100, 115– 134, 1997. 10.1016/S0031-9201(96)03235-9 CASWeb of Science®Google Scholar K. Righter, R. J. Walker, P. H. Warren, Significance of Highly Siderophile Elements and Osmium Isotopes in the Lunar and Terrestrial Mantles, Origin of the Earth and Moon, R. M. Canup, K. Righter, 291– 322, University of Arizona Press, Tucson, 2000. Google Scholar K. Righter, A. J. Campbell, M. Humayun, Diffusion in metal: application to zoned metal grains in chondrites, Goldschmidt Conference Abstracts, A640, 2002. Google Scholar K. Righter, A. J. Campbell, M. Humayun, Diffusion of siderophile elements in Fe metal: application to zoned metal grains in chondrites, Lunar Planet. Sci. Conf., XXXIII, abstract 1373, [CD-ROMR], 2003. Google Scholar K. Righter, A. J. Campbell, M. Humayun, R. L. Hervig, Partitioning of Ru, Rh, Pd, Re, Ir and Au between Cr-bearing spinel, olivine, pyroxene and silicate melts, Geochim. Cosmochim. Acta, 68, 867– 880, 2004. 10.1016/j.gca.2003.07.005 CASWeb of Science®Google Scholar A. E. Ringwood, Some aspects of the thermal evolution of the Earth, Geochim. Cosmochim. Acta, 20, 241– 259, 1960. 10.1016/0016-7037(60)90076-4 CASWeb of Science®Google Scholar A. E. Ringwood, Composition and Petrology of the Earth's mantle, 618, McGraw-Hill, New York, 1974. Google Scholar D. C. Rubie, H. J. Melosh, J. E. Reid, C Liebske, K. Righter, Mechanisms of metal-silicate equilibration in the terrestrial magma ocean, Earth Planet. Sci. Lett., 205, 239– 255, 2003. 10.1016/S0012-821X(02)01044-0 CASWeb of Science®Google Scholar T. Rushmer, W. G. Minarik, G. J. Taylor, Physical processes of core formation, Origin of the Earth and Moon, R. M. Canup, K. Righter, 227– 243, Univ. of Arizona Press, Tucson, 2000. Google Scholar A. Schersten, T. Elliot, C. Hawkesworth, M. Norman, Tungsten isotope evidence that mantle plumes contain no contribution from Earth's core, Nature, 427, 234– 238, 2004. 10.1038/nature02221 CASPubMedWeb of Science®Google Scholar G. Schmidt, H. Palme, K.-L. Kratz, G. Kurat, Are highly siderophile elements (PGE, Re, Au) fractionated in the upper mantle of the Earth? New results on peridotites from Zabargad, Chem Geol., 163, 167– 188, 2000. 10.1016/S0009-2541(99)00136-9 CASWeb of Science®Google Scholar G. Schmidt, G. Witt-Eickschen, H. Palme, H. Seek, B. Spettel, K.-L. Kratz, Highly siderophile elements (PGE, Re and Au) in mantle xenoliths from the West Eifel volcanic field (Germany), Chem. Geol., 196, 77– 105, 2003. 10.1016/S0009-2541(02)00408-4 CASWeb of Science®Google Scholar M. C. Shannon, C. B. Agee, Percolation of core melts at lower mantle conditions, Science, 280, 1059– 1061, 1998. 10.1126/science.280.5366.1059 CASPubMedWeb of Science®Google Scholar M. C. Shannon, C. B. Agee, High pressure constraints on percolative core formation, Geophys. Res. Lett., 13, 2717– 2720, 1998. Google Scholar G. H. Shaw, Effects of Core formation, Phys. Earth Planet. Int., 16, 361– 369, 1978. 10.1016/0031-9201(78)90074-2 Web of Science®Google Scholar G. H. Shaw, Core formation in terrestrial planets, Phys. Earth Planet. Int., 20, 42– 47, 1978. 10.1016/0031-9201(79)90106-7 Web of Science®Google Scholar S. B. Shirey, R. J. Walker, The Re-Os isotope system in cosmochemistry and high-temperature geochemistry, Ann. Rev. Earth Planet. Sci., 26, 423– 500, 1997. 10.1146/annurev.earth.26.1.423 Web of Science®Google Scholar J. E. Snow, G. Schmidt, Constraints on Earth accretion deduced from noble metals in the oceanic mantle, Nature, 391, 166– 169, 1998. 10.1038/34396 CASWeb of Science®Google Scholar V. S. Solomatov, Fluid dynamics of a terrestrial magma ocean, Origin of the Earth and Moon, R. M. Canup, K. Righter, 323– 338, Univ. of Arizona Press, Tucson, 2000. 10.2307/j.ctv1v7zdrp.23 Google Scholar V. S. Solomatov, D. J. Stevenson, Nonfractional crystallization of a terrestrial magma ocean, Jour. Geophys. Res., 98, 5391– 5406, 1993. 10.1029/92JE02579 Web of Science®Google Scholar W. E. Stone, J. H. Crocket, M. E. Fleet, Partitioning of palladium, iridium, platinum, and gold between sulfide liquid and basalt melt at 1200 C, Geochim. Cosmochim. Acta, 54, 2341– 2344, 1990. 10.1016/0016-7037(90)90061-O CASWeb of Science®Google Scholar E. Takahashi, Melting of a Yamato L3 chondrite (Y-74191) up to 30 kb, Proc. NIPR, 8, 168– 180, 1983. Google Scholar G. J. Taylor, Core formation in asteroids, Jour. Geophys. Res., 97, 14717– 14726, 1992. 10.1029/92JE01501 CASWeb of Science®Google Scholar W. B. Tonks, H. J. Melosh, The physics of crystal settling and suspension in a turbulent magma ocean, The Origin of the Earth, H. Newsom, J. H. Jones, 151– 174, Oxford Press, London, 1990. Google Scholar M. Tredoux, N. M. Lindsay, G. Davies, I. McDonald, The fractionation of platinum group elements in magmatic systems, with the suggestion of a novel causel mechanism, S. Afr. J. Geol., 98, 157– 167, 1995. CASGoogle Scholar H. C. Urey, The Planets, 245, Yale Univ. Press., New Haven, CT, 1952. Google Scholar R. D. Van der Hilst, H. Karason, Compositional heterogeneity in the bottom 1000 kilometers of Earth's mantle: toward a hybrid convection model, Science, 283, 1885– 1888, 1999. 10.1126/science.283.5409.1885 CASPubMedWeb of Science®Google Scholar D. Walker, Core participation in mantle geochemistry: Geochemical Society Ingerson Lecture, GSA Denver, October 1999, Geochim. Cosmochim. Acta, 64, 2897– 2911, 2000. 10.1016/S0016-7037(00)00429-4 CASWeb of Science®Google Scholar R. J. Walker, E. Nisbet, 187Os isotopic constraints on Archean mantle dynamics, Geochim. Cosmochim. Acta, 66, 3317– 3325, 2002. 10.1016/S0016-7037(02)00932-8 CASWeb of Science®Google Scholar R. J. Walker, J. W. Morgan, M. F. Horan, Osmium-187 enrichment in some plumes: evidence for core-mantle interaction?, Science, 269, 819– 822, 1995. 10.1126/science.269.5225.819 CASPubMedWeb of Science®Google Scholar R. J. Walker, E. J. Hanski, J. Vuollo, J. Liipo, The Os isotopic composition of Proterozoic upper mantle: evidence for chondritic upper mantle from the Outokumpu ophiolite, Finland, Earth Planet. Sci. Lett., 141, 161– 173, 1996. 10.1016/0012-821X(96)00076-3 CASWeb of Science®Google Scholar R. J. Walker, J. W. Morgan, E. S. Beary, M. I. Smoliar, G. K. Czamanske, M. F. Horan, Applications of the 190Pt-186Os isotope system to geochemistry and cosmochemistry, Geochim. Cosmochim. Acta, 61, 4799– 4807, 1997a. 10.1016/S0016-7037(97)00270-6 CASWeb of Science®Google Scholar R. J. Walker, J. W. Morgan, E. Hanskii, Re-Os systematics of Early Proterozoic ferropicrites, Pechenga Complex, northwestern Russia: Evidence for ancient 187Os-enriched plumes, Geochim. Cosmochim. Acta, 61, 3145– 3160, 1997b. 10.1016/S0016-7037(97)00088-4 CASWeb of Science®Google Scholar R. J. Walker, M. Storey, A. C. Kerr, Implications of 187Os isotopic heterogeneities in a mantle plume: evidence from Gorgona Island and Curacao, Geochim. Cosmochim. Acta, 63, 713– 728, 1999a. 10.1016/S0016-7037(99)00041-1 CASWeb of Science®Google Scholar M. J. Walter, H. E. Newsom, W. Ertel, A. Holzheid, Experimental and physical constraints on core formation: behavior of moderately and highly siderophile elements, Origin of the Earth and Moon, R. M. Canup, K. Righter, 265– 290, Univ. of Arizona Press, Tucson, 2000. Web of Science®Google Scholar H. Wanke, Constitution of the terrestrial planets, Phil. Trans. Roy. Soc. Lon Ser. A, 303, 287– 302, 1981. 10.1098/rsta.1981.0203 Web of Science®Google Scholar B. J. Wood, Carbon in the core, Earth Planet. Sci. Lett., 117, 593– 607, 1993. 10.1016/0012-821X(93)90105-I CASWeb of Science®Google Scholar B. J. Wood, L. T. Bryndzia, K. E. Johnson, Mantle oxidation state and its relationship to tectonic environment and fluid speciation, Science, 248, 337– 345, 1990. 10.1126/science.248.4953.337 CASPubMedWeb of Science®Google Scholar T. Yoshino, M. J. Walter, T. Katsura, Core formation in planetesi-mals triggered by permeable flow, Nature, 422, 154– 157, 2003. 10.1038/nature01459 CASPubMedWeb of Science®Google Scholar T. Yoshino, M. J. Walter, T. Katsura, Connectivity of molten Fe alloy in peridotite based on in situ electrical conductivity measurements: implications for core formation in terrestrial planets, Earth Planet. Sci. Lett., 222, 625– 643, 2004. 10.1016/j.epsl.2004.03.010 CASWeb of Science®Google Scholar C. J. Young, T. Lay, The core-mantle boundary, Ann. Rev. Earth Planet. Sci., 15, 25, 1987. 10.1146/annurev.ea.15.050187.000325 CASWeb of Science®Google Scholar A. Zindler, S. R. Hart, Chemical geodynamics, Ann. Rev. Earth Planet. Sci., 14, 493– 571, 1987. Web of Science®Google Scholar Citing Literature Earth's Deep Mantle: Structure, Composition, and Evolution, Volume 160 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX