Capítulo de livro Revisado por pares

The Role of Seafloor Hydrothermal Systems in the Evolution of Seawater Composition During the Phanerozoic

2011; American Geophysical Union; Linguagem: Inglês

10.1029/178gm14

ISSN

2328-8779

Autores

Lee R. Kump,

Tópico(s)

Methane Hydrates and Related Phenomena

Resumo

The Role of Seafloor Hydrothermal Systems in the Evolution of Seawater Composition During the Phanerozoic Lee R. Kump, Lee R. Kump Department of Geosciences, The Pennsylvania State University, University Park, Pennsylvania, USASearch for more papers by this author Lee R. Kump, Lee R. Kump Department of Geosciences, The Pennsylvania State University, University Park, Pennsylvania, USASearch for more papers by this author Book Editor(s):Robert P. Lowell, Robert P. LowellSearch for more papers by this authorJeffrey S. Seewald, Jeffrey S. SeewaldSearch for more papers by this authorAnna Metaxas, Anna MetaxasSearch for more papers by this authorMichael R. Perfit, Michael R. PerfitSearch for more papers by this author First published: 01 January 2008 https://doi.org/10.1029/178GM14Citations: 6Book Series:Geophysical Monograph Series AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary This chapter contains sections titled: Introduction Modeling the MG and CA Chemistry of the Oceans Reconstructing Ancient Seawater Chemistry from Brine Inclusions in Salt Deposits Reconciling Models and Proxies of [Mg2+] and [Ca2+] Variation References A. D. Anbar, A. H. Knoll, Proterozoic ocean chemistry and evolution: A bioinorganic bridge?, Science, 297, 1137– 1142, 2002. 10.1126/science.1069651 CASPubMedWeb of Science®Google Scholar R. S. Arvidson, F. T. Mackenzie, M. Guidry, MAGic: A Phanerozoic model for the geochemical cycling of major rockforming components, Am. J. Sci., 306, 135– 190, 2006. 10.2475/ajs.306.3.135 CASWeb of Science®Google Scholar A. Bekker, H. D. Holland, P. L. Wang, D. Rumble, H. J. Stein, J. L. Hannah, L. L. Coetzee, N. J. Beukes, Dating the rise of atmospheric oxygen, Nature, 427, 117– 120, 2004. 10.1038/nature02260 CASPubMedWeb of Science®Google Scholar R. A. Berner, Modeling atmospheric O2 over Phanerozoic time, Geochim. Cosmochim. Acta, 65, 685– 694, 2001. 10.1016/S0016-7037(00)00572-X CASWeb of Science®Google Scholar R. A. Berner, A model for calcium, magnesium and sulfate in seawater over Phanerozoic time, Am. J. Sci., 304, 438– 453, 2004. 10.2475/ajs.304.5.438 CASWeb of Science®Google Scholar R. A. Berner, GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2 , Geochim. Cosmochim. Acta, 70, 5653– 5664, 2006. 10.1016/j.gca.2005.11.032 CASWeb of Science®Google Scholar R. A. Berner, Z. Kothalava, GEOCARB III: A revised model of atmospheric CO2 over Phanerozoic time, Am. J. Sci., 301, 182– 204, 2001. 10.2475/ajs.301.2.182 CASWeb of Science®Google Scholar R. A. Berner, A. C. Lasaga, R. M. Garrels, The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years, Am. J. Sci., 283, 641– 683, 1983. 10.2475/ajs.283.7.641 CASWeb of Science®Google Scholar W. S. Broecker, A kinetic model for the chemical composition of sea water, Quat. Res., 1, 188– 207, 1971. 10.1016/0033-5894(71)90041-X CASGoogle Scholar W. S. Broecker, T.-H. Peng, The role of CaCO3 compensation in the glacial to interglacial atmospheric CO2 change, Global Biogeochem. Cycles, 1, 15– 29, 1987. 10.1029/GB001i001p00015 CASWeb of Science®Google Scholar D. E. Canfield, A new model for Proterozoic ocean chemistry, Nature, 396, 450– 453, 1998. 10.1038/24839 CASWeb of Science®Google Scholar R. V. Demicco, Modeling seafloor-spreading rates through time, Geology, 32, 485– 488, 2004. 10.1130/G20409.1 Web of Science®Google Scholar R. V. Demicco, T. K. Lowenstein, L. A. Hardie, R. J. Spencer, Model of seawater composition for the Phanerozoic, Geology, 33, 877– 880, 2005. 10.1130/G21945.1 CASWeb of Science®Google Scholar S. de Villiers, Excess dissolved Ca in the deep ocean: A hydrothermal hypothesis, Earth Planet. Sci. Lett., 164, 627– 641, 1998. 10.1016/S0012-821X(98)00232-5 CASWeb of Science®Google Scholar J. I. Drever, The magnesium problem, The Sea, E. D. Goldberg, 337– 357, Wiley Interscience, New York, 1974. Google Scholar H. Elderfield, A. Schultz, Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean, Annu. Rev. Earth Planet. Sci., 24, 191– 224, 1996. 10.1146/annurev.earth.24.1.191 CASWeb of Science®Google Scholar S. Gaffin, Ridge volume dependence on sea-floor generation rate and inversion using long-term sea level change, Am. J. Sci., 287, 596– 611, 1987. 10.2475/ajs.287.6.596 Web of Science®Google Scholar Y. Godderis, Y. Donnadieu, C. Dessert, B. Dupre, F. Fluteau, L. M. Francois, J. Meert, A. Nedelec, G. Ramstein, Coupled modeling of global carbon cycle and climate in the Neoproterozoic: links between Rodinia breakup and major glaciations, C. R. Geosci., 339, 212– 222, 2007. 10.1016/j.crte.2005.12.002 CASWeb of Science®Google Scholar K. W. Hansen, K. Wallmann, Cretaceous and Cenozoic evolution of seawater composition, atmospheric O2 and CO2: A model perspective, Am. J. Sci., 303, 94– 148, 2003. 10.2475/ajs.303.2.94 CASWeb of Science®Google Scholar H. D. Holland, The geologic history of sea water—an attempt to solve the problem, Geochim. Cosmochim. Acta, 36, 637– 651, 1972. 10.1016/0016-7037(72)90108-1 CASWeb of Science®Google Scholar H. D. Holland, Sea level, sediments and the composition of seawater, Am. J. Sci., 305, 220– 239, 2005. 10.2475/ajs.305.3.220 CASWeb of Science®Google Scholar J. Horita, H. Zimmerman, and H. D. Holland, 2002. The chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporites, Geochim. Cosmochim. Acta, 66. 10.1016/S0016-7037(01)00884-5 Web of Science®Google Scholar A. Isley, Hydrothermal plumes and the delivery of iron to banded iron formation, J. Geol., 103, 169– 185, 1997. 10.1086/629734 Web of Science®Google Scholar J. Joly, The age of the Earth, Sci. Mon., 16, 205– 216, 1923. Google Scholar J. F. Kasting, The carbonate-silicate geochemical cycle and its effect on atmospheric carbon-dioxide over the past 100 million years, Am. J. Sci., 284, 1175– 1182, 1984. 10.2475/ajs.284.10.1175 CASPubMedWeb of Science®Google Scholar J. F. Kasting, Box models for the evolution of atmospheric oxygen—an update, Global Planet. Change, 97, 125– 131, 1991. 10.1016/0921-8181(91)90133-H CASPubMedWeb of Science®Google Scholar L. R. Kump, W. E. Seyfried, Hydrothermal Fe fluxes during the Precambrian: Effect of low oceanic sulfate concentrations and low hydrostatic pressure on the composition of black smokers, Earth Planet. Sci. Lett., 235, 654– 662, 2005. 10.1016/j.epsl.2005.04.040 CASWeb of Science®Google Scholar T. K. Lowenstein, L. A. Hardie, M. N. Timofeeff, R. V. Demicco, Secular variation in seawater chemistry and the origin of calcium chloride basinal brines, Geology, 31, 857– 860, 2003. 10.1130/G19728R.1 CASWeb of Science®Google Scholar F. T. Mackenzie, R. M. Garrels, Chemical mass balance between rivers and oceans, Am. J. Sci., 264, 507– 525, 1966. 10.2475/ajs.264.7.507 CASWeb of Science®Google Scholar K. G. Miller, M. A. Kominz, J. V. Browning, J. D. Wright, G. S. Mountain, M. E. Katz, P. J. Sugarman, B. S. Cramer, N. Christie- Blick, S. F. Pekar, The Phanerozoic record of global sea-level change, Science, 310, 1293– 1298, 2005. 10.1126/science.1116412 CASPubMedWeb of Science®Google Scholar J. L. Payne, L. R. Kump, Evidence for recurrent Early Triassic massive volcanism from quantitative interpretation of carbon isotope fluctuations, Earth Planet. Sci. Lett., 256, 264– 277, 2007. 10.1016/j.epsl.2007.01.034 CASWeb of Science®Google Scholar S. W. Poulton, P. W. Fralick, D. E. Canfield, The transition to a sulphidic ocean ∼1.84 billion years ago, Nature, 431, 173– 178, 2004. 10.1038/nature02912 CASPubMedWeb of Science®Google Scholar D. B. Rowley, Rate of plate creation and destruction: 180 Ma to present, Geol. Soc. Am. Bull., 114, 927– 933, 2002. 10.1130/0016-7606(2002)114 2.0.CO;2 Web of Science®Google Scholar W. W. Rubey, The geologic history of seawater—an attempt to state the problem, Bull. Geol. Soc. Am., 62, 1111– 1148, 1951. 10.1130/0016-7606(1951)62[1111:GHOSW]2.0.CO;2 CASWeb of Science®Google Scholar W. E. Seyfried, K. Ding, M. E. Berndt, Phase-Equilibria Constraints on the Chemistry of Hot-Spring Fluids at Midocean Ridges, Geochim. Cosmochim. Acta, 55, 3559– 3580, 1991. 10.1016/0016-7037(91)90056-B CASWeb of Science®Google Scholar Y. Shen, A. H. Knoll, M. R. Walter, Evidence for low sulphate and anoxia in a mid-Proterozoic marine basin, Nature, 423, 632– 635, 2003. 10.1038/nature01651 CASPubMedWeb of Science®Google Scholar L. G. Sillen, The physical chemistry of sea water, Oceanography, M. Sears, 549– 581, American Association for the Advancement of Science, Washington, D. C., 1961. Google Scholar R. J. Spencer, L. A. Hardie, Control of seawater composition by mixing of river waters and midocean ridge hydrothermal brines, Fluid-Mineral Interactions: A Tribute to H. P. Eugster, R. J. Spencer, L.-M. Chou, 409– 419, Geochemical Society Special Publications, 1990. Google Scholar M. N. Timofeeff, T. K. Lowenstein, M. A. da Silva, N. B. Harris, Secular variation in the major-ion chemistry of seawater: Evidence from fluid inclusions in Cretaceous halites, Geochim. Cosmochim. Acta, 70, 1977– 1994, 2006. 10.1016/j.gca.2006.01.020 CASWeb of Science®Google Scholar J. Veizer, W. Compston, J. Hoefs, H. Nielsen, Mantle buffering of the early oceans, Naturwissenschaften, 69, 173– 180, 1982. 10.1007/BF00364890 CASWeb of Science®Google Scholar J. C. G. Walker, P. B. Hays, J. F. Kasting, A negative feedback mechanism for the long-term stabilization of Earth's surface temperature, J. Geophys. Res., 86, 9776– 9782, 1981. 10.1029/JC086iC10p09776 CASWeb of Science®Google Scholar K. Wallmann, Controls on the Cretaceous and Cenozoic evolution of seawater composition, atmospheric CO2 and climate, Geochim. Cosmochim. Acta, 65, 3005– 3025, 2001. 10.1016/S0016-7037(01)00638-X CASWeb of Science®Google Scholar T. J. Wolery, N. H. Sleep, Hydrothermal circulation and geochemical flux at Mid-Ocean Ridges, J. Geol., 84, 249– 275, 1976. 10.1086/628195 CASWeb of Science®Google Scholar T. J. Wolery, N. H. Sleep, Interactions of geochemical cycles with the mantle, Chemical Cycles in the Evolution of the Earth, C. B. Gregor, et al. 77– 104, John Wiley and Sons, Inc., New York, 1988. Google Scholar Citing Literature Magma to Microbe: Modeling Hydrothermal Processes at Ocean Spreading Centers, Volume 178 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX