Microbial biomineralization processes forming modern Ca:Mg carbonate stromatolites
2009; Wiley; Volume: 57; Issue: 1 Linguagem: Inglês
10.1111/j.1365-3091.2009.01083.x
ISSN1365-3091
AutoresAlessandra Spadafora, Edoardo Perri, Judith A. McKenzie, CRISÃGONO VASCONCELOS,
Tópico(s)Geochemistry and Elemental Analysis
ResumoSedimentologyVolume 57, Issue 1 p. 27-40 Microbial biomineralization processes forming modern Ca:Mg carbonate stromatolites ALESSANDRA SPADAFORA, ALESSANDRA SPADAFORA Geological Institute, ETH-Zürich, 8092 Zürich, Switzerland Present address: A.R.P.A. Calabria, Dipartimento di Cosenza, 87100 Cosenza, Italy.Search for more papers by this authorEDOARDO PERRI, EDOARDO PERRI Dipartimento di Scienze della Terra – Università della Calabria, 87036 Rende, Italy (E-mail: [email protected])Search for more papers by this authorJUDITH A. MCKENZIE, JUDITH A. MCKENZIE Geological Institute, ETH-Zürich, 8092 Zürich, SwitzerlandSearch for more papers by this authorCRISÓGONO VASCONCELOS, CRISÓGONO VASCONCELOS Geological Institute, ETH-Zürich, 8092 Zürich, SwitzerlandSearch for more papers by this author ALESSANDRA SPADAFORA, ALESSANDRA SPADAFORA Geological Institute, ETH-Zürich, 8092 Zürich, Switzerland Present address: A.R.P.A. Calabria, Dipartimento di Cosenza, 87100 Cosenza, Italy.Search for more papers by this authorEDOARDO PERRI, EDOARDO PERRI Dipartimento di Scienze della Terra – Università della Calabria, 87036 Rende, Italy (E-mail: [email protected])Search for more papers by this authorJUDITH A. MCKENZIE, JUDITH A. MCKENZIE Geological Institute, ETH-Zürich, 8092 Zürich, SwitzerlandSearch for more papers by this authorCRISÓGONO VASCONCELOS, CRISÓGONO VASCONCELOS Geological Institute, ETH-Zürich, 8092 Zürich, SwitzerlandSearch for more papers by this author First published: 15 December 2009 https://doi.org/10.1111/j.1365-3091.2009.01083.xCitations: 151 Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Modern Ca:Mg carbonate stromatolites form in association with the microbial mat in the hypersaline coastal lagoon, Lagoa Vermelha (Brazil). The stromatolites, although showing diversified fabrics characterized by thin or crude lamination and/or thrombolitic clotting, exhibit a pervasive peloidal microfabric. The peloidal texture consists of dark, micritic aggregates of very high-Mg calcite and/or Ca dolomite formed by an iso-oriented assemblage of sub-micron trigonal polyhedrons and organic matter. Limpid acicular crystals of aragonite arranged in spherulites surround these aggregates. Unlike the aragonite crystals, organic matter is present consistently in the dark, micritic carbonate comprising the peloids. This organic matter is observed as sub-micron flat and filamentous mucus-like structures inside the interspaces of the high-Mg calcite and Ca dolomite crystals and is interpreted as the remains of degraded extracellular polymeric substances. Moreover, many fossilized bacterial cells are associated strictly with both carbonate phases. These cells consist mainly of 0·2 to 4 μm in diameter, sub-spherical, rod-like and filamentous forms, isolated or in colony-like clusters. The co-existence of fossil extracellular polymeric substances and bacterial bodies, associated with the polyhedrons of Ca:Mg carbonate, implies that the organic matter and microbial metabolism played a fundamental role in the precipitation of the minerals that form the peloids. By contrast, the lack of extracellular polymeric substances in the aragonitic phase indicates an additional precipitation mechanism. The complex processes that induce mineral precipitation in the modern Lagoa Vermelha microbial mat appear to be recorded in the studied lithified stromatolites. Sub-micron polyhedral crystal formation of high-Mg calcite and/or Ca dolomite results from the coalescence of carbonate nanoglobules around degraded organic matter nuclei. Sub-micron polyhedral crystals aggregate to form larger ovoidal crystals that constitute peloids. Subsequent precipitation of aragonitic spherulites around peloids occurs as micro-environmental water conditions around the peloids change. References Allen, C.C., Albert, F.G., Chafetz, H.S., Combie, J., Graham, C.R., Kieft, T.L., Kivett, S.J., McKay, D.S., Steele, A., Taunton, A.E., Taylor, M.R., Thomas-Keprta, K.L. and Westall, F. (2000) Microscopic physical biomarkers in carbonate hot springs: implications in the search for life on Mars. Icarus, 147, 49–67. Aloisi, G., Gloter, A., Wallmann, K., Guyot, F. and Zuddas, P. (2006) Nucleation of calcium carbonate on bacterial nanoglobules. Geology, 34, 1017–1020. Arp, G., Thiel, V., Reimer, A., Michaelis, W. and Reitner, J. (1999) Biofilm exopolymers control microbialite formation at thermal springs discharging into the alkaline Pyramid Lake, Nevada, USA. Sed. Geol., 126, 159–176. Arp, G., Reimer, A. and Reitner, J. (2003) Microbialite formation in seawater of increased alkalinity, Satonda Crater Lake, Indonesia. J. Sed. Res., 73, 105–127. Barbiére, E.B. (1985) Condições climaticas dominantes na porção oriental da lagoa de Araruama (RJ) e suas implicações na diversidade do teor de salinidade. Cad. Ciênc. Terra, 59, 1–35. Bertrand-Sarfati, J. (1976) An attempt to classify late Precambrian stromatolite microstructures. In: Stromatolites (Ed. M.R. Walter). Dev. Sedimentol., 20, 251–259. Bontognali, T.R.R., Vasconcelos, C., Warthmann, R.J., Dupraz, C., Bernasconi, S.M. and McKenzie, J.A. (2008) Microbes produce nanobacteria-like structures, avoiding cell entombment. Geology, 36, 663–666. Bosak, T., Souza-Egipsy, V. and Newman, D.K. (2004) A laboratory model of abiotic peloid formation. Geobiology, 2, 189–198. Camoin, G.F., Gautret, P., Montaggioni, L.F. and Cabioch, G. (1999) Nature and environmental significance of microbialites in Quaternary reefs: the Tahiti paradox. Sed. Geol., 126, 271–304. Chafetz, H.S. (1986) Marine peloids: a product of bacterially induced precipitation of calcite. J. Sed. Petrol., 56, 812–817. Défarge, C., Trichet, J., Jaunet, A.M., Michel, R., Tribble, J. and Sansone, F.J. (1996) Texture of microbial sediments revealed by cryo-scanning electron microscopy. J. Sed. Res., 66, 935–947. Dupraz, C. and Strasser, A. (1999) Microbialites and microencrusters in shallow coral bioherms (Middle to Late Oxfordian, Swiss Jura Mountains). Facies, 40, 101–130. Dupraz, C. and Visscher, P.T. (2005) Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol., 13, 429–438. Dupraz, C., Visscher, P.T., Baumgartner, L.K. and Reid, R.P. (2004) Microbe-mineral interactions: early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas). Sedimentology, 51, 745–765. Flügel, E. (2004) Microfacies of Carbonate Rocks: Analysis, Interpretation and Application. Springer, Berlin, 976 pp. Folk, R.L. (1993) SEM imaging of bacteria and nannobacteria in carbonate sediments and rocks. J. Sed. Petrol., 63, 990–999. Folk, R.L. (1999) Nannobacteria and the precipitation of carbonate in unusual environments. Sed. Geol., 126, 47–55. Gautret, P., Camoin, G., Golubic, S. and Sprachta, S. (2004) Tracing automicrite formation and its biochemical setting in modern lagoonal microbialites. J. Sed. Res., 74, 462–478. Gebelein, C.D. (1974) Biologic control of stromatolite microstructure: implications for Precambrian time stratigraphy. Am. J. Sci., 274, 575–598. Jones, B., Renaut, R.W. and Rosen, M.R. (2001) Taphonomy of silicifed filamentous microbes in modern geothermal sinters – implications for identification. Palaios, 16, 580–592. Kennard, J.M. and James, N.P. (1986) Thrombolites and stromatolites: two distinct types of microbial structures. Palaios, 1, 492–503. Van Lith, Y., Vasconcelos, C., Warthmann, R., Martins, J.C.F. and McKenzie, J.A. (2002) Bacterial sulphate reduction and salinity: two controls on dolomite precipitation in Lagoa Vermelha and Brejo do Espinho (Brazil). Hydrobiologia, 485, 35–49. Van Lith, Y., Warthmann, R., Vasconcelos, C. and McKenzie, J.A. (2003a) Sulphate-reducing bacteria induce low-temperature Ca-dolomite and high Mg-calcite formation. Geobiology, 1, 71–79. Van Lith, Y., Warthmann, R., Vasconcelos, C. and McKenzie, J.A. (2003b) Microbial fossilization in carbonate sediments: a result of the bacterial surface involvement in dolomite precipitation. Sedimentology, 50, 237–245. Macintyre, I.G. (1985) Submarine cements – the peloidal question. SEPM Spec. Publ., 36, 109–116. McKee, E.D. and Gutschick, R.C. (1969) History of the Redwall Limestone of Northern Arizona. Geol. Soc. Am. Mem., 114, 1–726. Monty, C.L.V. (1976) The origin and development of cryptalgal fabrics. In: Stromatolites (Ed. M.R. Walter), Dev. Sedimentol., 20, 193–249. Moreira, N.F., Walter, L.M., Vasconcelos, C., McKenzie, J.A. and McCall, P.J. (2004) Role of sulfide oxidation in dolomitization: sediment and pore-water geochemistry of a modern hypersaline lagoon system. Geology, 32, 701–704. Neuweiler, F., Gautret, P., Volker, T., Langes, R., Michaelis, W. and Reitner, J. (1999) Petrology of Lower Cretaceous carbonate mud mounds (Albian, N. Spain): insights into organomineralic deposits of the geological record. Sedimentology, 46, 837–859. Paerl, H.W., Steppe, T.F. and Reid, R.P. (2001) Bacterially mediated precipitation in marine stromatolites. Environ. Microbiol., 3, 123–130. Pentecost, A. (1985) Association of cyanobacteria with tufa deposits: identity, enumeration and nature of the sheath material revealed by histochemistry. Geomicrobiology, 4, 285–298. Perri, E. and Tucker, M. (2007) Bacterial fossils and microbial dolomite in Triassic stromatolites. Geology, 35, 207–210. Pinckney, J.L. and Reid, R.P. (1997) Productivity and community composition of stromatolitic microbial mats in the Exuma Cays, Bahamas. Facies, 36, 204–207. Popa, R., Kinkle, B.K. and Badescu, A. (2004) Pyrite framboids as biomarkers for iron–sulfur system. Geomicrobiol. J., 21, 193–206. Reid, R.P., Visscher, P.T., Decho, A., Stolz, J.K., Bebout, B.M., Dupraz, C., MacIntyre, I.G., Paerl, H.W., Pinchney, J.L., Prufert-Bebout, L., Steppe, T.F. and Des Marais, D.J. (2000) The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature, 406, 989–992. Reitner, J., Gautret, P., Marin, F. and Neuweiler, F. (1995) Automicrites in modern marine microbialite. Formation model via organic matrices (Lizard Island, Great Barrier Reef, Australia). Bull. Inst. Océanogr. Monaco Spec. No. 14, 237–264. Riding, R. (2000) Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology, 47(Suppl. 1), 179–214. Riding, R. (2002a) Structure and composition of organic reefs and carbonate mud mounds: concepts and categories. Earth-Sci. Rev., 58, 163–231. Riding, R. (2002b) Biofilm architecture of Phanerozoic cryptic carbonate marine veneers. Geology, 30, 31–34. Riding, R. and Tomás, S. (2006) Stromatolite reef crusts, Early Cretaceous, Spain: bacterial origin of in situ-precipitated peloid microspar? Sedimentology, 53, 23–34. Schieber, J. and Arnott, H.J. (2003) Nannobacteria as a byproduct of enzyme-driven tissue decay. Geology, 31, 717–720. Southam, G. and Donald, R. (1999) A structural comparison of bacterial microfossils vs. “nanobacteria” and nanofossils. Earth-Sci. Rev., 48, 251–264. Sprachta, S., Camoin, G., Golubic, S. and Le Campion, Th. (2001) Microbialites in a modern lagoonal environment: nature and distribution (Tikehau atoll, French Polynesia). Palaeogeogr. Palaeoclimatol. Palaeoecol., 175, 103–124. Trichet, J. and Défarge, C. (1995) Non-biologically supported organomineralization. Bull. Inst. Océanogr. Monaco Spec. No. 14, 203–236. Trichet, J., Défarge, C., Tribble, J., Tribble, G. and Sansone, F. (2001) Christmas Islands lagoonal lakes: models for the deposition of carbonate evaporite-organic laminated sediments. Sed. Geol., 140, 177–189. Vasconcelos, C. and McKenzie, J.A. (1997) Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil). J. Sed. Res., 67, 378–390. Vasconcelos, C., McKenzie, J.A., Bernasconi, S., Grujic, D. and Tien, A.J. (1995) Microbial mediation as a possible mechanism for dolomite formation. Nature, 377, 220–222. Vasconcelos, C., Warthmann, R., McKenzie, J.A., Visscher, P.T., Bittermann, A.G. and Van Lith, Y. (2006) Lithifying microbial mats in Lagoa Vermelha, Brazil: modern Precambrian relics? Sed. Geol., 185, 175–183. Visscher, P.T. and Stolz, J.F. (2005) Microbial mats as bioreactors: populations, process, and products. Palaeogeogr. Palaeoclimatol. Palaeoecol., 219, 87–100. Visscher, P.T., Reid, R.P., Bebout, B.M., Hoeft, S.E., Macintyre, I.G. and Thompson, J.A. (1998) Formation of lithified micritic laminae in modern marine stromatolites (Bahamas): the role of sulfur cycling. Am. Mineral., 83, 482–1493. Warthmann, R., Van Lith, Y., Vasconcelos, C., McKenzie, J.A. and Karpoff, A.M. (2000) Bacterially induced dolomite precipitation in anoxic culture experiments. Geology, 28, 1091–1094. Westall, F., Steele, A., Toporski, J., Walsh, M., Allen, C., Guidry, S., McKay, D., Gibson, E. and Chafetz, H. (2000) Polymeric substances and biofilms in terrestrial and extraterrestrial materials. J. Geophys. Res., 105, 511–528. Wright, D.T. and Wacey, D. (2005) Precipitation of dolomite using sulfate-reducing bacteria from the Coorong Region, South Australia: significance and implication. Sedimentology, 52, 987–1008. Citing Literature Volume57, Issue1January 2010Pages 27-40 ReferencesRelatedInformation
Referência(s)