O ‐Acetylserine Sulfhydrylase
2000; Wiley; Linguagem: Inglês
10.1002/9780470123201.ch5
ISSN1934-4694
Autores Tópico(s)Enzyme Structure and Function
ResumoO-Acetylserine Sulfhydrylase Chia-Hui Tai, Chia-Hui Tai Department of Chemistry and Biochemistry, University of Oklahoma, 620 Parrington Oval, Norman, Oklahoma 73019Search for more papers by this authorPaul F. Cook, Paul F. Cook Department of Chemistry and Biochemistry, University of Oklahoma, 620 Parrington Oval, Norman, Oklahoma 73019Search for more papers by this author Chia-Hui Tai, Chia-Hui Tai Department of Chemistry and Biochemistry, University of Oklahoma, 620 Parrington Oval, Norman, Oklahoma 73019Search for more papers by this authorPaul F. Cook, Paul F. Cook Department of Chemistry and Biochemistry, University of Oklahoma, 620 Parrington Oval, Norman, Oklahoma 73019Search for more papers by this author Book Editor(s):Daniel L. Purich, Daniel L. Purich University of Florida College of Medicine, Gainesville, FloridaSearch for more papers by this author First published: 01 January 2000 https://doi.org/10.1002/9780470123201.ch5Citations: 8Book Series:Advances in Enzymology - and Related Areas of Molecular Biology AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary This chapter contains sections titled: Cysteine Synthesis PLP-Dependent b̃-Replacement Reactions O-Acetylserine Sulfhydrylase References Alexander FW, Sandmeier E, Mehta PK, Christen P (1994): Evolutionary relationship among pyridoxal 5′-phosphate-dependent enzymes, regiospecific alpha, beta, and gamma families. Eur J Biochem 219: 953–960 10.1111/j.1432-1033.1994.tb18577.x CASPubMedWeb of Science®Google Scholar Becker MA, Kredich NM, Tomkins GM (1969): The purification and characterization of O-acetylserine sulfhydrylase A from Salmonella typhimurium . J Biol Chem 244: 2418–2427. CASPubMedWeb of Science®Google Scholar Benci S, Vaccari S, Mozzarelli A, Cook PF (1997): Time-resolved fluorescence of O-acetylserine sulfhydrylase catalytic intermediates. Biochemistry 36: 15419–15427. 10.1021/bi970464i CASPubMedWeb of Science®Google Scholar Benci S, Vaccari S, Mozzarelli A, Cook PF (1999a): Time-resolved fluorescence of O-acetylserine sulfhydrylase. Biochim Biophysica Acta 1429: 317–330. 10.1016/S0167-4838(98)00229-5 CASPubMedWeb of Science®Google Scholar Benci S, Bettati S, Vaccari S, Schianchi G, Mozzarelli A, Cook PF (1999b): Conformational probes of O-acetylserine sulfhydrylase: fluorescence of tryptophans 50 and 161. J Photochem Photobiol 48: 17–26. 10.1016/S1011-1344(99)00003-2 CASWeb of Science®Google Scholar Brzovic PS, Kayastha AM, Miles EW, Dunn MF (1992): Substitution of glutamic acid 109 by aspatic acid alters the substrate specificity and catalytic activity of the β-subunit in the tryptophan synthase bienzyme complex from Salmonella typhimurium . Biochemistry 31: 1180–1190. 10.1021/bi00119a030 CASPubMedWeb of Science®Google Scholar Burkhard P, Rao GSJ, Hohenester E, Cook PF, Jansonius JN (1998): Three dimensional structure of O-acetylserine sulfhydrylase from Salmonella typhimurium at 2.2 Å. J Mol Biol 283: 111–120. 10.1006/jmbi.1998.2037 PubMedWeb of Science®Google Scholar Burkhard P, Tai C-H, Ristroph CM, Cook PF, Jansonius JN (1999): Ligand binding induces a large conformational change in O-acetylserine sulfhydrylase from Salmonella typhimurium . J Mol Biol 291: 941–953. 10.1006/jmbi.1999.3002 CASPubMedWeb of Science®Google Scholar Byrne CR, Monroe RS, Ward KA, Kredich NM (1988): DNA sequences of the cysK regions of Salmonella typhimurium and Escherichia coli and linkage of the cysK regions to ptsH. J Bacteriol 190: 3150–3157. 10.1128/jb.170.7.3150-3157.1988 Google Scholar Cook PF, Wedding RT (1976): A reaction mechanism from steady state kinetic studies for O-acetylserine sulfhydrylase from Salmonella typhimurium . J Biol Chem 251: 2023–2029. CASPubMedWeb of Science®Google Scholar Cook PF, Wedding RT (1977a): Initial characterization of the multifunctional complex, cysteine synthase. Arch Biochem Biophys 179: 293–302. 10.1016/0003-9861(77)90194-1 Web of Science®Google Scholar Cook PF, Wedding RT (1977b): Overall mechanism and rate equation for O-acetylserine sulfhydrylase. J Biol Chem 252: 3549. Google Scholar Cook PF, Wedding RT (1978): Cysteine synthase from Salmonella typhimurium: aggregation, kinetic behavior and effect of modifiers. J Biol Chem 253: 7874–7879. CASPubMedWeb of Science®Google Scholar Cook PF, Hara S, Nalabolu S, Schnackerz KD (1992): pH dependence of the absorbance and 31P NMR spectra of O-acetylserine sulfhydrylase in the absence and presence of O-acetyl-L-serine. Biochemistry 31: 2298–2303. 10.1021/bi00123a013 CASPubMedWeb of Science®Google Scholar Cook PF, Tai C-H, Hwang C-C, Woehl EU, Dunn MF, Schnackerz KD (1996): Substitution of pyridoxal 5′-phosphate in the O-acetylserine sulfhydrylase from Salmonella typhimurium by cofactor analogs provides an effective test of the mechanism of α-aminoacrylate formation. J Biol Chem 271: 25842–25849. 10.1074/jbc.271.42.25842 CASPubMedWeb of Science®Google Scholar Davis L, Metzler DE (1972): Pyridoxal-linked elimination and replacement reactions. In “ The Enzymes” 3rd ed. PD Boyer (ed). New York: Academic Press, pp. 33–74. Google Scholar Dolphin D, Poulson R, Avramovic O (1986): “ Vitamine B6 Pyridoxal Phosphate: Chemical, Biochemical, and Medical Aspects, Part A & B.” New York: John Wiley & Sons. Google Scholar Drewe WF Jr, Dunn MF (1985): Detection and identification of intermediates in the reaction of L-serine with Escherichia coli tryptophan synthase via rapid-scanning ultraviolet-visible spectroscopy. Biochemistry 24: 3977–3987. 10.1021/bi00336a027 CASPubMedWeb of Science®Google Scholar Drewe WF Jr, Dunn MF (1986): Characterization of the reaction of L-serine and indole with Escherichia coli tryptophan synthase via rapid-scanning ultraviolet-visible spectroscopy. Biochemistry 25: 2494–2501. 10.1021/bi00357a032 CASPubMedWeb of Science®Google Scholar Dunathan HC (1971): Stereochemical aspect of pyridoxal phosphate catalysis. Adv Enzymol 35: 79–134. 10.1002/9780470122808.ch3 CASPubMedWeb of Science®Google Scholar Flint DH, Tuminello JF, Miller TJ (1996): Studies on the synthesis of the Fe-S cluster of dihy-droxy-acid dehydratase in Escherichia coli crude extract. J Biol Chem 271: 16053–16067. 10.1074/jbc.271.27.16053 CASPubMedWeb of Science®Google Scholar Floss HG, Schleicher E, Potts RG (1976): Stereochemistry of the formation of cysteine by O-acetylserine sulfhydrylase. J Biol Chem 251: 5478–5483. CASPubMedWeb of Science®Google Scholar Giovanelli J (1987): Sulfur amino acids of plants: an overview. Methods Enzymol 143: 419–426. 10.1016/0076-6879(87)43073-5 CASWeb of Science®Google Scholar Goldberg ME, Baldwin RL (1967): Interaction between the subunits of the tryptophan synthase of Escherichia coli: optical properties of an intermediate bound to the α2β2 complex. Biochemistry 6: 2113–2119. 10.1021/bi00859a032 CASPubMedWeb of Science®Google Scholar Hara S, Payne MA, Schnackerz KD, Cook PF (1990): A rapid purification procedure and computer-assisted sulfide ion electrode assay for O-acetylserine sulfhydrylase from Salmonella typhimurium . Protein Expr Purif 1: 70–76. 10.1016/1046-5928(90)90048-4 CASPubMedGoogle Scholar Hellinga HW, Evans PR (1985): Nucleotide sequence and high-level expression of the major Escherichia coli phosphofructokinase. Eur J Biochem 149: 363–373. 10.1111/j.1432-1033.1985.tb08934.x CASPubMedWeb of Science®Google Scholar Hryniewicz MM, Kredich NM (1991): The cysP promoter of Salmonella typhimurium: characterization of two binding sites for CysB protein, studies of an in vivo transcription initiation, and demonstration of the anti-inducer effects of thiosulfate. J Bacterol 17: 5876–5886. 10.1128/jb.173.18.5876-5886.1991 Google Scholar Hryniewicz M, Sirko A, Palucha A, Böck A, Hulanicka MD (1990): Sulfate and thiosulfate transport in Escherichia coli K-12: identification of a gene encoding a novel protein involved in thiosulfate binding. J Bacteriol 172: 3358–3366. 10.1128/JB.172.6.3358-3366.1990 CASPubMedWeb of Science®Google Scholar Hwang C-C, Woehl EU, Dunn MF, Cook PF (1996): Kinetic isotope effects as a probe of the β-elimination reaction catalyzed by O-acetylserine sulfhydrylase. Biochemistry 35: 6358–6365. 10.1021/bi9602472 CASPubMedWeb of Science®Google Scholar Hyde CC, Ahmed SA, Padlan EA, Miles EW, Davies DR (1988): Three dimensional structure of the tryptophan synthase α2β2 multienzyme complex from Salmonella typhimurium . J Biol Chem 263: 17857–17871. CASPubMedWeb of Science®Google Scholar Jenkins WT, Sizer IW (1957): Glutamic aspatic transaminase. J Am Chem Soc 79: 2655–2656. 10.1021/ja01567a086 CASWeb of Science®Google Scholar Klein HW, Palm D, Helmreich EJM (1982): General acid-base catalysis of α-glucan phosphorylase stereospecific glucosyl transfer from D-glucal is a pyridoxal 5′-phosphate and orthophosphate (arsenate) dependent reaction. Biochemistry 21: 6675–6684. 10.1021/bi00269a010 CASPubMedWeb of Science®Google Scholar Kredich NM (1996): Biosynthesis of cysteine. In “ Escherichia coli and Salmonella,” 2nd ed. FC Neidhardt (ed). Washington, DC: ASM Press, pp. 514–527. Google Scholar Kredich NM (1971): Regulation of L-cysteine biosynthesis in Salmonella typhimurium. I. Effects of growth on varying sulfur sources and O-acetyl-L-serine on gene expression. J Biol Chem 246: 3474–3484. CASPubMedWeb of Science®Google Scholar Kredich NM, Tomkins GM (1966): The enzymatic synthesis of L-cysteine in Escherichia coli and Salmonella typhimurium . J Biol Chem 241: 4955–4965. CASPubMedWeb of Science®Google Scholar Kredich NM, Becker MA, Tomkins GM (1969): Purification and characterization of cysteine synthase, a bifunctional protein complex, from Salmonella typhimurium . J Biol Chem 244: 2428–2439. CASPubMedWeb of Science®Google Scholar Krone FA, Westphal G, Schwenn JD (1991): Characterization of the gene cysH and of its product phospho-adenylsulfate reductase from Escherichia coli . Mol Gen Genet 225: 314–319. 10.1007/BF00269864 CASPubMedWeb of Science®Google Scholar Lane AN, Kirschner K (1983): The mechanisms of binding of L-serine to tryptophan synthase from Escherichia coli . Eur J Biochem 129: 561–570. 10.1111/j.1432-1033.1983.tb07086.x CASPubMedWeb of Science®Google Scholar Leyh TS (1993): GTPase mediated activation of ATP sulfurylase. Crit Rev Biochem Mol Biol 28: 515–542. 10.3109/10409239309085137 CASPubMedWeb of Science®Google Scholar Leyh TS, Suo Y (1992): The physical biochemistry and molecular genetics of sulfate activation. J Biol Chem 267: 542–545. PubMedWeb of Science®Google Scholar Leyh TS, Taylor J, Markham GD (1988): The sulfate activation locus of Escherichia coli K12: cloning, genetic and enzymatic characterization. J Biol Chem 263: 2409–2416. CASPubMedWeb of Science®Google Scholar Leyh TS, Vogt TF, Suo Y (1992): The DNA sequence of the sulfate activation locus of Escherichia coli K12. J Biol Chem 267: 10405–10410. CASPubMedWeb of Science®Google Scholar Liu C, Martin E, Leyh TS (1994): GTPase activation of ATP sulfurylase: the mechanism. Biochemistry 33: 2042–2047. 10.1021/bi00174a009 CASPubMedWeb of Science®Google Scholar Lu Z, Hagata S, Mcphie P, Miles EW (1993): Lysine 87 in the β-subunit of tryptophan synthase that forms an internal aldimine with pyridoxal phosphate serves critical roles in transimination, catalysis, and product release. J Biol Chem 268: 8727–8734. CASPubMedWeb of Science®Google Scholar Maskill H (1985) “ The Physical Basis of Organic Reactions.” New York: Oxford University Press, pp. 295–300. Google Scholar McClure GD, Cook PF (1994): Product binding to the α-carboxyl subsite results in a conformational change at the active site of O-acetylserine sulfhydrylase-A: evidence from fluorescence spectroscopy. Biochemistry 33: 1674–1683. 10.1021/bi00173a009 CASPubMedWeb of Science®Google Scholar Miles EW (1986): Pyridoxal phosphate enzymes catalyzing β-elimination and β-replacement reactions. In “ Vitamine B6 Pyridoxal Phosphate: Chemical, Biochemical, and Medical Aspects, Part B.” D Dolphin, R Poulson, O Avramovic (eds). New York: John Wiley & Sons, pp. 253–310. Web of Science®Google Scholar Miles EW, McPhie P (1974): Evidence for a rate-determining proton abstraction in the serine deaminase reaction of the β-subunit of tryptophan synthase. J Biol Chem 249: 2852–2857. CASPubMedWeb of Science®Google Scholar Morozov YV (1986): Spectroscopic properties, electronic structure, and photochemical behavior of vitamine B6 and analogs. In “ Vitamine B6 Pyridoxal Phosphate: Chemical, Biochemical, and Medical Aspects, Part A.” D Dolphin, R Poulson, O Avramovic (eds). New York: John Wiley & Sons, pp. 131–222. Google Scholar Mozzarelli A, Bettati S, Pucci AM, Cook PF (1998): The catalytic competence of O-acetylserine sulfhydrylase in the crystal probed by polarized absorption microspectrophotometry. J Mol Biol 283: 121–133. 10.1006/jmbi.1998.2038 PubMedWeb of Science®Google Scholar Nakamura T, Kon H, Iwahashi H, Eguchi Y (1983): Evidence that thiosulfate assimilation by Salmonella typhimurium is catalyzed by cysteine synthase B. J Bacteriol 156: 656–662. 10.1128/jb.156.2.656-662.1983 CASPubMedWeb of Science®Google Scholar Nakamura T, Iwahashi H, Eguchi Y (1984): Enzymatic proof for the identity of the S-sulfocysteine synthase and cysteine synthase B of Salmonella typhimurium . J Bacteriol 158: 1122–1127. CASPubMedWeb of Science®Google Scholar Rao JGS, Goldsmith EJ, Mottonen J, Cook PF (1993): Crystallization and preliminary x-ray data for the A-isozyme of O-acetylserine sulfhydrylase from Salmonella typhimurium . J Mol Biol 231: 1130–1132. 10.1006/jmbi.1993.1358 CASPubMedWeb of Science®Google Scholar Rege V, Kredich NM, Tai C-H, Karsten WE, Schnackerz KD, Cook PF (1996): A change in the internal aldimine lysine (K41) in O-acetylserine sulfhydrylase to alanine indicates a role for the lysine in transimination and as a general base catalyst. Biochemistry 35: 13485–13493. 10.1021/bi961517j CASPubMedWeb of Science®Google Scholar Rhee S, Parris KD, Hyde CC, Ahmed SA, Miles EW, Davies DR (1997): Crystal structures of a mutant (K87T) tryptophan synthase α2β2 multienzyme complex with ligands bound to the active sites of the α- and β-subunits reveal ligand-induced conformational changes. Biochemistry 36: 7664–7680. 10.1021/bi9700429 CASPubMedWeb of Science®Google Scholar Robbins PW, Lipmann F (1958): Enzymatic synthesis of adenosine-5′-phosphosulfate. J Biol Chem 233: 686–690. CASPubMedWeb of Science®Google Scholar Roy M, Miles EW, Phillips RS, Dunn MF (1988): Detection and identification of transient intermediates in the reactions of tryptophan. Evidence for a tetrahedral (dem-diamine) intermediate. Biochemistry 27: 8661–8669. 10.1021/bi00423a023 CASPubMedWeb of Science®Google Scholar Satishchandran C, Markham GD (1989): Adenosine 5′-phosphosulfate kinase from Escherichia coli K12. J Biol Chem 264: 15012–15021. CASPubMedWeb of Science®Google Scholar Satishchandran C, Hickman YN, Markham GD (1992): Characterization of the phosphorylated enzyme intermediate formed in the adenosine 5′-phosphosulfate kinase reaction. Biochemistry 31: 11684–11688. 10.1021/bi00162a003 CASPubMedWeb of Science®Google Scholar Scarsdale JN, Kazanina G, Radaev S, Schirch V, Wright HT (1999): Crystal structure of rabbit cytosolic serine hydroxymethyltransferase at 2.8 Å resolution:mechanistic implication. Biochemistry 38: 8347–8358. 10.1021/bi9904151 CASPubMedWeb of Science®Google Scholar Schleicher E, Marcuso K, Potts RG, Mann DR, Floss HG (1976) Stereochemistry and mechanism of reactions catalyzed by tryptophanase and tryptophan synthase. J Am Chem Soc 98: 1043–1044. 10.1021/ja00420a043 CASPubMedWeb of Science®Google Scholar Schnackerz KD (1986): 31P-NMR spectroscopy of vitamine B6 and derivatives. In “ Vitamine B6 Pyridoxal Phosphate: Chemical, Biochemical, and Medical Aspects, Part A.” D Dolphin, R Poulson, O Avramovic (eds). New York: John Wiley & Sons, pp. 245–264. Google Scholar Schnackerz KD, Cook PF (1995): Resolution of the pyridoxal 5′-phosphate from O-acetylserine sulfhydrylase and reconstitution with the native cofactor and analogs. Arch Biochem Biophys 324: 71–77. 10.1006/abbi.1995.9927 CASPubMedWeb of Science®Google Scholar Schnackerz KD, Erlich JH, Giesemann W, Reed AT (1979): Mechanism of action of D-serine dehydratase-identification of a transient intermediate. Biochemistry 18: 3557–3563. 10.1021/bi00583a019 CASPubMedWeb of Science®Google Scholar Schnackerz KD, Tai C-H, Simmons JWIII, Jacobson TM, Rao GSJ, Cook PF (1995): Identification and characterization of the external aldimine intermediate of the O-acetylserine sulfhydrylase reaction. Biochemistry 34: 12152–12160. 10.1021/bi00038a008 CASPubMedWeb of Science®Google Scholar Siegel LM, Davis PS (1974): Reduced nicotinamide adenine dinucleotide phosphate-sulfite reductase of Enterobacteria. IV. The Escherichia coli hemoflavoprotein:subunit structure and dissociation into hemoprotein and flavoprotein components. J Biol Chem 249: 1587–1598. CASPubMedWeb of Science®Google Scholar Siegel LM, Murphy MJ, Kamin H (1973): Reduced nicotinamide adenine dinucleotide phosphate-sulfite reductase of Enterobacteria. I. The Escherichia coli hemoflavoprotein:molecular parameters and prosthetic groups. J Biol Chem 248: 251–261. CASPubMedWeb of Science®Google Scholar Siegel LM, Davis PS, Kamin H (1974): Reduced nicotinamide adenine dinucleotide phosphatesulfite reductase of Enterobacteria. III. The Escherichia coli hemoflavoprotein:catalytic parameters and the sequence of electron flow. J Biol Chem 249: 1572–1586. CASPubMedWeb of Science®Google Scholar Sirko A, Hryniewicz M, Hulanicka MD, Böck A (1990): Sulfate and thiosulfate transport in Escherichia coli K-12:nucleotide sequence and expression of the cysTWAM gene cluster. J Bacteriol 172: 3351–3357. 10.1128/jb.172.6.3351-3357.1990 CASPubMedWeb of Science®Google Scholar Strambini G, Cioni P, Cook PF (1996): Tryptophan and coenzyme luminescence as a probe of conformation along the O-acetylserine sulfhydrylase reaction pathway. Biochemistry 35: 8392–8400. 10.1021/bi952919e CASPubMedWeb of Science®Google Scholar Sundararaju B, Antson AA, Phillips RS, Demidkina TV, Barbolina MA, Gollnick P, Dodson GG, Wilson KS (1997): The crystal structure of Citrobacter freundii tyrosine phenol-lyase complexed with 3-(4′-hydroxyphenyl)propionic acid, together with site-directed mutagensis and kinetic analysis, demonstrates that arginine 381 is required for substrate specificity. Biochemistry 36: 6502–6510. 10.1021/bi962917+ CASPubMedWeb of Science®Google Scholar Tai C-H, Nalabolu SR, Jacobson TM, Minter DE, Cook PF (1993): Kinetic mechanisms of O-acetylserine sulfhydrylases A and B from Salmonella typhimurium with natural and alternate substrates. Biochemistry 32: 6433–6442. 10.1021/bi00076a017 CASPubMedWeb of Science®Google Scholar Tai C-H, Nalabolu SR, Jacobson TM, Simmons JWIII, Cook PF (1995): pH dependence of kinetic parameters for O-acetylserine sulfhydrylases A and B from Salmonella typhimurium . Biochemistry 34: 12311–12322. 10.1021/bi00038a027 CASPubMedWeb of Science®Google Scholar Tai C-H, Yoon M-Y, Rege VD, Kredich NM, Schnackerz KD, Cook PF (1998): A cysteine (C42) immediately N-terminal to the internal aldimine lysine is responsible for stabilizing the α-aminoacrylate intermediate in the reaction catalyzed by O-acetylserine sulfhydrylase. Biochemistry 37: 10597–10604. 10.1021/bi980647k CASPubMedWeb of Science®Google Scholar Tsang ML-S (1983): Function of thioredoxin of 3′-phosphoadenosine 5′-phosphosulfate in E. coli. In “ Thioredoxins—structure and function” P Gadal (ed). Paris: Centre National de Recherche Scientifique, pp. 103–110. Web of Science®Google Scholar Tsang ML-S, Schiff JA (1978): Assimilatory sulfate reduction in an Escherichia coli mutant lacking thioredoxin activity. J Bacteriol 134: 131–138. CASPubMedWeb of Science®Google Scholar Vogel HJ, Bonner DM (1956): Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem 218: 97–106. 10.1016/S0021-9258(18)65874-0 CASPubMedWeb of Science®Google Scholar Warren MJ, Roessner CA, Santander PJ, Scott AI (1990): The Escherichia coli cysG gene encodes S-adenosylmethioine-dependent uroporphyrinogen III methylase. Biochem J 265: 725–729. 10.1042/bj2650725 CASPubMedWeb of Science®Google Scholar Westheimer FH (1961): The magnitude of the primary kinetic isotope effect for the compounds of hydrogen and deuterium. Chem Rev 61: 265–275. 10.1021/cr60211a004 CASWeb of Science®Google Scholar Woehl EU, Tai C-H, Dunn MF, Cook PF (1996): Formation of the α-aminoacrylate intermediate limits the overall reaction by O-acetylserine sulfhydrylase. Biochemistry 35: 4776–4783. 10.1021/bi952938o CASPubMedWeb of Science®Google Scholar Woodin TS, Segel IH (1968): Glutathione reductase-dependent metabolism of cysteine S-sulfate by Penicillium chrysogenum . Biochim Biophys Acta 167: 78–88. 10.1016/0005-2744(68)90278-7 CASPubMedWeb of Science®Google Scholar Citing Literature Advances in Enzymology and Related Areas of Molecular Biology, Volume 74 ReferencesRelatedInformation
Referência(s)