Determining the Glass Transition in Polymer Melts
2007; Wiley; Linguagem: Inglês
10.1002/9780470189078.ch1
ISSN1934-5372
Autores Tópico(s)Polymer crystallization and properties
ResumoChapter 1 Determining the Glass Transition in Polymer Melts Wolfgang Paul, Wolfgang Paul Department of Chemistry, Howard University, 525 College Street, N. W. Washington, D. C., 20059, U.S.A.Search for more papers by this author Wolfgang Paul, Wolfgang Paul Department of Chemistry, Howard University, 525 College Street, N. W. Washington, D. C., 20059, U.S.A.Search for more papers by this author Book Editor(s):Kenny B. Lipkowitz, Kenny B. Lipkowitz Department of Chemistry, Howard University, 525 College Street, N. W. Washington, D. C., 20059, U.S.A.Search for more papers by this authorThomas R. Cundari, Thomas R. Cundari Department of Chemistry, Howard University, 525 College Street, N. W. Washington, D. C., 20059, U.S.A.Search for more papers by this author First published: 30 April 2007 https://doi.org/10.1002/9780470189078.ch1Citations: 4Book Series:Reviews in Computational Chemistry AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary The prelims comprise: Introduction Phenomenology of the Glass Transition Model Building Chemically Realistic Modeling Coarse-Grained Models Simulation Methods Thermodynamic Properties Dynamics in Super-Cooled Polymer Melts Dynamics in the Bead-Spring Model Dynamics in 1,4-Polybutadiene Dynamic Heterogeneity Summary Acknowledgments References REFERENCES K. Binder, and W. Kob, Glassy Materials and Disordered Solids, World Scientific, Singapore, 2005. K. L. Ngai, E. Riande, and M. D. Ingram, Eds., J. Non-Cryst. Solids, 235–237, 1 (1998). Proceedings of the Third International Discussion Meeting on Relaxations in Complex Systems. K. L. Ngai, G. Floudas, A. K. Rizos, and E. Riande, Eds., J. Non-Cryst. Solids, 307–310, 1–1080 (2002). Proceedings of the Fourth International Discussion Meeting on Relaxations in Complex Systems. A. J. Kovacs, J. Polymer Sci., 30, 131 (1958). La Contraction Isotherme du Volume des Polymères Amorphes. C. A. Angell, J. Res. Natl. Inst. Stand. Technol., 102, 171 (1997). Entropy and Fragility in Supercooling Liquids. I. Gutzow and J. Schmelzer, The Vitreous State. Thermodynamics, Structure, Rheology and Crystallization, Springer, Berlin, 1995. J. Jäckle, Rep. Progr. Phys., 49, 171 (1986). Models of the Glass Transition. J. Zarzycki, Ed., Glasses and Amorphous Materials, Materials Science and Technology, Vol. 9, VCH Publishers, Weinheim, 1991. G. B. Mc Kenna, in Comprehensive Polymer Science:, Vol. 2, C. Booth and C. Price, Eds., Pergamon, Oxford, 1989, pp. 311–362. Glass Formation and Glassy Behavior. G. R. Strobl, The Physics of Polymers, Springer, Berlin, 1996. P. G. De Gennes, Scaling Concepts in Polymer Physics, Cornell, University Press, Ithaca, 1979. M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, Clarendon Press, Oxford, 1986. J. D. Ferry, Viscoelastic Properties of Polymers, Wiley, New York, 1980. T. P. Lodge, N. A. Rotstein, and S. Prager, Adv. Chem. Phys., 79, 1 (1991). Dynamics of Entangled Polymer Liquids. Do Linear Chains Reptate? D. Richter, M. Monkenbusch, A. Arbe, and J. Colmenero, Neutron Spin Echo in Polymer Systems, Advances in Polymer Science, Vol. 174, Springer, Berlin, 2005. W. Paul, G. D. Smith, D. Y. Yoon, B. Farago, S. Rathgeber, A. Zirkel, L. Willner, and D. Richter, Phys. Rev. Lett., 80, 2346 (1998). Chain Motion in an Unentangled Polymer Melt: A Critical Test of the Rouse Model by Molecular Dynamics Simulations and Neutron Spin Echo Spectroscopy. G. D. Smith, W. Paul, M. Monkenbusch, L. Willner, D. Richter, X. H. Qiu, and M. D. Ediger, Macromolecules, 32, 8857 (1999). Molecular Dynamics of a 1,4-Polybutadiene Melt. Comparison of Experiment and Simulation. W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman, J. Am. Chem. Soc., 117, 5179 (1995). A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. W. Ponder and D. A. Case, Adv. Prot. Chem., 66, 27 (2003). Force Fields for Protein Simulations. W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, J. Am. Chem. Soc., 118, 11225 (1996). Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. H. Sun, J. Phys. Chem., B, 102, 7338 (1998). COMPASS: An Ab Initio Force-Field Optimized for Condensed-Phase Applications-Overview with Details on Alkane and Benzene Compounds. A. D. MacKerell, Jr., D. Bashford, R. L. Bellott, R. L. Dunbrack Jr., J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher III, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, and M. Karplus, J. Phys. Chem., B, 102, 3586 (1998). All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins. J. R. Maple, M. J. Hwang, T. P. Stockfish, U. Dinur, M. Waldman, C. S. Ewig, and A. T. Hagler, J. Comput. Chem., 15, 162 (1994). Derivation of Class II Force Fields. I. Methodology and Quantum Force Field for the Alkyl Functional Group and Alkane Molecules. J. P. Bowen and N. L. Allinger, in Reviews in Computational Chemistry, Vol. 2, K. B. Lipkowitz and D. B. Boyd, Eds., VCH, Weinheim, Germany 1991, pp. 81–98. Molecular Mechanics: The Art and Science of Parameterization. U. Dinur and A. T. Hagler, in Reviews in Computational Chemistry, Vol. 2, K. B. Lipkowitz and D. B. Boyd, Eds., VCH, Weinheim, Germany, 1991, pp. 99–164. New Approaches to Empirical Force Fields. C. R. Landis, D. M. Root, and T. Cleveland, in Reviews in Computational Chemistry, Vol. 6, K. B. Lipkowitz and D. B. Boyd, Eds., VCH, Weinheim, Germany, 1995, pp. 73–148. Molecular Mechanics Force Fields for Modeling Inorganic and Organometallic Compounds. S. L. Price, in Reviews in Computational Chemistry, Vol. 14, K. B. Lipkowitz and D. B. Boyd, Eds., Wiley-VCH, New York, 2000, pp. 225–289. Toward More Accurate Model Intermolecular Potentials For Organic Molecules. M. Jalaie and K. B. Lipkowitz, in Reviews in Computational Chemisty, Vol. 14, K. B. Lipkowitz and D. B. Boyd, Eds., Wiley-VCH, New York, 2000, pp. 441–486. Appendix: Published Force Field Parameters for Molecular Mechanics, Molecular Dynamics, and Monte Carlo Simulations. G. D. Smith, in Handbook of Materials Modeling, S. Yip, Ed., Springer, New York, 2005, pp. 2561–2573. Atomistic Potentials for Polymers and Organic Materials. A. Arnold and C. Holm, in Advanced Computer Simulation Approaches for Soft Matter Sciences II, Advances in Polymer Science, Vol. 185, K. Kremer and C. Holm, Eds., Springer, Berlin, 2005, pp. 59–109. Efficient Methods to Compute Long-Range Interactions for Soft Matter Systems. O. Borodin and G. D. Smith, J. Phys. Chem. B, 107, 6801 (2003). Development of Quantum Chemistry-Based Force Fields for Poly(ethylene oxide) with Many-Body Polarization Interactions. O. Borodin and G. D. Smith, in Computational Materials Chemistry: Methods and Applications, L. Curtiss and M. S. Gordon, Eds., Kluwer Academic Publishers, Dordrecht, The Netherlands 2004, pp. 35–90. Molecular Modeling of Poly(ethylenoxide) Melts and Poly(-ethylene oxide) Based Polymer Electrolytes. “Transferable Potentials from Phase Equilibria” force fields. Available: http://siepmann6.chem.umn.edu/trappe/intro.php M. Kutteh and T. P. Straatsma, in Reviews in Computational Chemistry, Vol. 12, K. B. Lipkowitz and D. B. Boyd, Eds., VCH, Weinheim, Germany, 1998, pp. 75–136. Molecular Dynamics with General Holonomic Constraints and Application to Internal Coordinate Constraints. W. Paul, in Computational Soft Matter: From Synthetic Polymers to Proteins, NIC Symposium Series, Jülich, Germany, 2004, pp. 169–193. Chemically Realistic Computer Simulations of Polymer Melts: Equilibration Issues and Study of Relaxation Processes. K. Binder Ed., Monte Carlo and Molecular Dynamics Simulations in Polymer Science, Oxford University Press, Oxford, 1995. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, 1987. M. Kotelyanski and D. N. Theodoru, Eds., Simulation Methods for Polymers, Marcel Dekker, New York, 2004. S. C. Glotzer and W. Paul, Annu. Rev. Mater. Res., 32, 401 (2002). Molecular and Mesoscale Simulation Methods for Polymer Materials. K. Kremer and K. Binder, Comput. Phys. Rep., 7, 259 (1988). Monte Carlo Simulation of Lattice Models for Macromolecules. K. Binder, and W. Paul, J. Polym. Sci. Polym. Phys., 35, 1 (1997). Monte Carlo Simulations of Polymer Dynamics: Recent Advances. J. Baschnagel, J. P. Wittmer, and H. Meyer, in Computational Soft Matter: From Synthetic Polymers to Proteins, NIC Symposium Series, Jülich, Germany, 2004, pp. 83–140. Monte Carlo Simulation of Polymers: Coarse-Grained Models. R. Faller, in Reviews in Computational Chemistry, Vol. 23, K. B. Lipkowitz and T. R. Cundari, Eds., Wiley-VCH, New York, 2006, Coarse Grain Modelling of Polymers. K. Kremer and G. S. Grest, J. Chem. Phys. 92, 5057 (1990). Dynamics of Entangled Linear Polymer Melts: A Molecular Dynamics Simulation. I. Gerroff, A. Milchev, K. Binder, and W. Paul, J. Chem. Phys., 98, 6526 (1993). A New OffLattice Monte Carlo Model for Polymers: A Comparison of Static and Dynamic Properties with the Bond-Fluctuation Model and Application to Random Media. H. Meyer and F. Müller-Plathe, Macromolecules, 35, 1241 (2002). Formation of ChainFolded Structures in Supercooled Polymer Melts Examined by MD Simulations. I. Carmesin and K. Kremer, Macromolecules, 21, 2819 (1988). The Bond Fluctuation Method: A New Effective Algorithm for the Dynamics of Polymers in All Spatial Dimensions. H.-P. Wittmann and K. Kremer, Comput. Phys. Commun. 61, 309 (1990). Vectorized Version of the Bond Fluctuation Method for Lattice Polymers; Erratum Notice, Comput. Phys. Commun., 71, 343 (1992). H.-P. Deutsch and K. Binder, J. Chem. Phys., 94, 2294 (1991). Interdiffusion and SelfDiffusion in Polymer Mixtures: A Monte Carlo Study. W. Paul, K. Binder, W. W. Heermann, and K. Kremer, J. Phys. II, 1, 37 (1991). Crossover Scaling in Semidilute Polymer Solutions: A Monte Carlo Test. D. P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics, Cambridge University Press, Cambridge, 2000. S. Geyler, T. Pakula, and J. Reiter, J. Chem. Phys., 92, 2676 (1990). Monte Carlo Simulation of Dense Polymer Systems on a Lattice. P. V. K. Pant and D. N. Theodorou, Macromolecules, 28, 7224 (1995). Variable Connectivity Method for the Atomistic Monte Carlo Simulation of Polydisperse Polymer Melts. V. G. Mavrantzas, T. D. Boone, E. Zervopoulou, and D. N. Theodorou, Macromolecules, 32, 5072 (1999). End-Bridging Monte Carlo: A Fast Algorithm for Atomistic Simulation of Condensed Phases of Long Polymer Chains. V. G. Mavrantzas and D. N. Theodorou, Comput. Theor. Polym. Sci., 10, 1 (2000). Atomistic Simulation of the Birefringence of Uniaxially Stretched Polyethylene Melts. N. C. Karayiannis, V. G. Mavrantzas, and D. N. Theodorou, Phys. Rev. Lett., 88, 105503 (2002). A Novel Monte Carlo Scheme for the Rapid Equilibration of Atomistic Model Polymer Systems of Precisely Defined Molecular Architecture. N. C. Karayiannis, A. E. Giannousaki, V. G. Mavrantzas, and D. N. Theodorou, J. Chem. Phys., 117, 5465 (2002). Atomistic Monte Carlo Simulation of Strictly Monodisperse Long Polyethylene Melts through a Generalized Chain Bridging Algorithm. A. Uhlherr, V. G. Mavrantzas, M. Doxastakis, and D. N. Theodorou, Macromolecules, 34, 8554 (2001). Directed Bridging Methods for Fast Atomistic Monte Carlo Simulations of Bulk Polymers. A. Uhlherr, M. Doxastakis, V. G. Mavrantzas, D. N. Theodorou, S. J. Leak, N. E. Adam, and P. E. Nyberg, Europhys. Lett., 57, 506 (2002). Atomic Structure of a High Polymer Melt. M. Doxastakis, V. G. Mavrantzas, and D. N. Theodorou, J. Chem. Phys., 115, 11339 (2001). Atomistic Monte Carlo Simulation of cis-1,4 Polyisoprene Melts. I. Single Temperature End-Bridging Monte Carlo Simulations. M. Doxastakis, V. G. Mavrantzas, and D. N. Theodorou, J. Chem. Phys., 115, 11352 (2001). Atomistic Monte Carlo Simulation of cis-1,4 Polyisoprene Melts. II. Parallel Tempering End-Bridging Monte Carlo Simulations. W. Paul and M. Müller, J. Chem. Phys., 115, 630 (2001). Enhanced Sampling in Simulations of Dense Systems: The Phase Behavior of Collapsed Polymer Globules. R. C. van Schaik, H. J. C. Berendsen, A. Torda, and W. F. van Gunsteren, J. Mol. Biol., 234, 751 (1993). A Structure Refinement Method Based on Molecular Dynamics in Four Spatial Dimensions. T. C. Beutler and W. F. van Gunsteren, J. Chem. Phys., 101, 1417 (1994). Molecular Dynamics Free Energy Calculation in Four Dimensions. G. Chikenji, M. Kikuchi, and Y. Iba, Phys. Rev. Lett., 83, 1886 (1999). Multi-Self-Overlap Ensemble for Protein Folding: Ground State Search and Thermodynamics. H. Yoshida, Phys. Lett. A, 150, 262 (1990). Construction of Higher Order Symplectic Integrators. M. Tuckerman, B. J. Berne, and G. J. Martyna, J. Chem. Phys., 97, 1990 (1992). Reversible Multiple Time Scale Molecular Dynamics. A. Kopf, B. Dünweg, and W. Paul, Comput. Phys. Commun., 101, 1 (1997). Multiple Time Step Integrators and Momentum Conservation. J.-P. Ryckart, G. Ciccotti, and H. J. C. Berendsen, J. Comput. Phys., 23, 327 (1977). Numerical Integration of the Cartesian Equations of Motion of a System With Constraints: Molecular Dynamics of n-Alkanes. H. C. Andersen, J. Comput. Phys., 52, 24 (1983). Rattle: A “Velocity” Version of the Shake Algorithm for Molecular Dynamics Calculations. H. C. öttinger, Stochastic Processes in Polymeric Fluids, Springer, New York, 1996. W. Paul, and J. Baschnagel, Stochastic Processes: From Physics to Finance, Springer, Berlin, 1999. P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Springer, Berling, 1995. W. Paul and D. Y. Yoon, Phys. Rev. E, 92, 2076 (1995). Stochastic Phase Space Dynamics With Constraints for Molecular Systems. S. Nosé, Molec. Phys., 52, 255 (1984). A Molecular Dynamics Method for Simulations in the Canonical Ensemble. W. G. Hoover, Phys. Rev. A, 31, 1695 (1985). Canonical Dynamics—Equilibrium Phase Space Distributions. H. C. Andersen, J. Chem. Phys., 72, 2384 (1980). Molecular Dynamics Simulations at Constant Pressure and/or Temperature. W. Paul and J. Baschnagel, in Monte Carlo and Molecular Dynamics Simulations in Polymer Science, K. Binder Ed., Oxford University Press, Oxford, 1995, pp. 307–355. Monte Carlo Simulations of the Glass Transition in Polymers. D. J. Rigby and R. J. Roe, J. Chem. Phys., 87, 7285 (1987). Molecular Dynamics Simulation of Polymer Liquid and Glass. I. Glass Transition. D. J. Rigby and R. J. Roe, J. Chem. Phys., 89, 5280 (1988). Molecular Dynamics Simulation of Polymer Liquid and Glass. II. Short Range Order and Orientation Correlation. G. Adam and J. H. Gibbs, J. Chem. Phys., 43, 139 (1965). On the Temperature Dependence of Cooperative Relaxation Properties in Glassforming Liquids. R. H. Boyd, R. H. Gee, J. Han, and Y. Jin, J. Chem. Phys., 101, 788 (1994). Conformational Dynamics in Bulk Polyethylene: A Molecular Dynamics Simulation Study. J. Han, R. H. Gee, and R. H. Boyd, Macromolecules, 27, 7781 (1994). Glass Transition Temperatures of Polymers from Molecular Dynamics Simulations. K.-Q. Yu, Z.-S. Li, and J. Sun, Macromol. Theory Simul., 10, 624 (2001). Polymer Structures and Glass Transition: A Molecular Dynamics Simulation Study. K. Vollmayr, W. Kob, and K. Binder, Phys. Rev. B, 54, 15808 (1996). Cooling-Rate Effects in Amorphous Silica: A Computer-Simulation Study. R. Brüning and K. Samwer, Phys. Rev. B, 46, 11318 (1992). Glass Transition on Long Time Scales. A. V. Lyulin, N. K. Balabaev, and M. A. J. Michels, Macromolecules, 36, 8574 (2003). Molecular-Weight and Cooling-Rate Dependence of Simulated Tg for Amorphous Polystyrene. C. Bennemann, W. Paul, K. Binder, and B. Dünweg, Phys. Rev. E, 57, 843 (1998). Molecular Dynamics Simulations of the Thermal Glass Transition in Polymer Melts: α-Relaxation Behavior. J. Buchholz, W. Paul, F. Varnik, and K. Binder, J. Chem. Phys., 117, 7364 (2002). Cooling Rate Dependence of the Glass Transition Temperature of Polymer Melts: A Molecular Dynamics Study. F. Stillinger, J. Chem. Phys., 88, 7818 (1988). Supercooled Liquids, Glass Transitions and the Kauzmann Paradox. J. H. Gibbs and E. A. Di Marzio, J. Chem. Phys., 28, 373 (1958). Nature of the Glass Transition and the Glassy State. M. Wolfgardt, J. Baschnagel, W. Paul, and K. Binder, Phys. Rev. E, 54, 1535 (1996). Entropy of Glassy Polymer Melts: Comparison Between Gibbs-Di Marzio and Simulation. P. J. Flory, Proc. Roy. Soc. London A, 234, 60 (1956). Statistical Thermodynamics of SemiFlexible Chain Molecules. A. Milchev, C. R. Acad. Bulg. Sci., 36, 1415 (1983). On the Statistics of Semiflexible Polymer Chains. H.-P. Wittmann, J. Chem. Phys., 95, 8449 (1991). On the Validity of the Gibbs–Di Marzio Theory of the Glass Transition. D. Frenkel, and B. Smit, Understanding Molecular Simulation. From Algorithms to Applications, Academic Press, San Francisco, 1996. M. Wolfgardt, J. Baschnagel, and K. Binder, J. Chem. Phys., 103, 7166 (1995). On the Equation of State of Thermal Polymer Solutions and Melts. H. Meirovitch, in Reviews in Computational Chemistry, Vol. 12, K. B. Lipkowitz and D. B. Boyd, Wiley-VCH, New York, 1998, pp. 1–74. Calculation of the Free Energy and the Entropy of Macromolecular Systems by Computer Simulation. W. Götze, in Liquids, Freezing and the Glass Transition, J. P. Hansen, D. Levesque, and J. Zinn-Justin, Eds., North-Holland, Amsterdam, 1990, pp. 287–503. Aspects of Structural Glass Transitions. W. Götze and L. Sjögren, Rep. Progr. Phys., 55, 241 (1992). Relaxation Processes in Supercooled Liquids. W. Götze, J. Phys.-Condes. Matter, 11, A1 (1999). Recent Tests of the Mode-Coupling Theory for Glassy Dynamics. T. Franosch, M. Fuchs, W. Götze, M. R. Mayr, and A. P. Singh, Phys. Rev. E, 55, 7153 (1997). Asymptotic Laws and Preasymptotic Correction Formulas for the Relaxation Near Glass-Transition Singularities. M. Fuchs, W. Götze, and M. R. Mayr, Phys. Rev. E, 58, 3384 (1998). Asymptotic Laws for Tagged-Particle Motion in Glassy Systems. R. Schilling and T. Scheidsteger, Phys. Rev. E, 56, 2932 (1997). Mode Coupling Approach to the Ideal Glass Transition of Molecular Liquids: Linear Molecules. R. Schilling, J. Phys. Condens. Matter, 12, 6311 (2000). Mode-Coupling Theory for Translational and Orientational Dynamics Near the Ideal Glass Transition. R. Schilling, Phys. Rev. E, 65, 051206 (2002). Reference-Point-Independent Dynamics of Molecular Liquids and Glasses in the Tensorial Formalism. S. H. Chong and W. Götze, Phys. Rev. E, 65, 041503 (2002). Idealized Glass Transitions for a System of Dumbbell Molecules. S. H. Chong and W. Götze, Phys. Rev. E, 65, 051201 (2002). Structural Relaxation in a System of Dumbbell Molecules. W. Paul and G. D. Smith, Rep. Prog. Phys., 67, 1117 (2004). Structure and Dynamics of Amorphous Polymers: Computer Simulations Compard to Experiment and Theory. J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids, Academic Press, London, 1986. S. Krushev and W. Paul, Phys. Rev. E, 67, 021806 (2003). Intramolecular Caging in Polybutadiene Due to Rotational Barriers. D. Richter, B. Frick, and B. Farago, Phys. Rev. Lett., 61, 2465 (1988). Neutron-Spin-Echo Investigation on the Dynamics of Polybutadiene Near the Glass Transition. B. Frick, D. Richter, and C. Ritter, Europhys. Lett. 9, 557 (1989). Structural Changes Near the Glass Transition–Neutron Diffraction on a Simple Polymer. G. D. Smith, D. Bedrov, and W. Paul, J. Chem. Phys., 121, 4961 (2004). Molecular Dynamics Simulation Study of the α-Relaxation in a 1,4-Polybutadiene Melt as Probed by the Coherent Dynamic Structure Factor. B. Frick and C. Alba-Simionesco, Appl. Phys. A (Suppl.), 74, S549 (2002). Pressure Dependence of the Boson Peak in Poly(butadiene). B. Frick, C. Alba-Simionesco, K. H. Andersen, and L. Willner, Phys. Rev. E, 67, 051801 (2003). Influence of Density and Temperature on the Microscopic Structure and the Segmental Relaxation of Polybutadiene. A. Cailliaux, C. Alba-Simionesco, B. Frick, L. Willner, and I. Goncharenko, Phys. Rev. E, 67, 010802 (2003). Local Structure and Glass Transition of Polybutadiene up to 4 GPa. B. Frick, G. Dosseh, A. Cailliaux, and C. Alba-Simionesco, Chem. Phys., 292, 311 (2003). Pressure Dependence of the Segmental Relaxation of Polybutadiene and Polyisobutylene and Influence of Molecular Weight. D. Bedrov, G. D. Smith, and W. Paul, Phys. Rev. E, 70, 011804 (2004). On the Anomalous Pressure Dependence of the Structure Factor of 1,4-Polybutadiene Melts. A Molecular Dynamics Simulation Study. W. Paul, D. Y. Yoon, and G. D. Smith, J. Chem. Phys., 103, 1702 (1995). An Optimized United Atom Model for the Simulation of Polymethylene. W. Paul, G. D. Smith, and D. Y. Yoon, Macromolecules, 30, 7772 (1997). Static and Dynamic Properties of a n-C100H202 Melt from Molecular Dynamics Simulations. J. Baschnagel and K. Binder, Physica A, 204, 47 (1994). Structural Aspects of a ThreeDimensional Lattice Model for the Glass Transition of Polymer Melts. A Monte Carlo Simulation. H.-P. Wittmann, K. Kremer, and K. Binder, J. Chem. Phys., 96, 6291 (1992). Glass Transition of Polymer Melts: A 2-D Monte Carlo Study in the Framework of the Bond Fluctuation Method. J. Baschnagel, Phys. Rev. B, 49, 135 (1994). Analysis of the Incoherent Intermediate Scattering Function in the Framework of the Idealized Mode-Coupling Theory: A Monte Carlo Study for Polymer Melts. J. Baschnagel and M. Fuchs, J. Phys.: Condens. Matter, 7, 6761 (1995). Monte Carlo Simulation of the Glass Transition in Polymer Melts: Extended Mode-Coupling Analysis. M. Rosche, R. G. Winkler, P. Reineker, and M. Schulz, J. Chem. Phys., 112, 3051 (2000). Topologically Induced Glass Transition in Dense Polymer Systems. K. Binder, J. Baschnagel, and W. Paul, Prog. Polym. Sci., 28, 115 (2003). Glass Transition of Polymer Melts: Test of Theoretical Concepts by Computer Simulation. J. Baschnagel and F. Varnik, Phys.: Condens. Matter, 17, R851 (2005). Computer Simulations of Supercooled Polymer Melts in the Bulk and in Confined Geometry. C. Bennemann, J. Baschnagel, and W. Paul, Eur. Phys. J. B, 10, 323 (1999). Molecular Dynamics Simulation of a Glassy Polymer Melt: Incoherent Scattering Function. W. Kob, J. Horbach, and K. Binder, in Slow Dynamics in Complex Systems: 8th Tohwa University Int'l Symposium, M. Tokuyama and I. Oppenheim, Eds., AIP Press, Woodbury, CT, 1999, pp. 441–451. The Dynamics of Non-Crystalline Silica: Insight from Molecular Dynamics Computer Simulations. T. Gleim and W. Kob, Eur. Phys. J. B, 13, 83 (2000). The α-Relaxation Dynamics of a Simple Liquid. M. Aichele and J. Baschnagel, Eur. Phys. J. E, 5, 229 (2001). Glassy Dynamics of Simulated Polymer Melts: Coherent Scattering and van Hove Correlation Functions. Part I: Dynamics in the α-Relaxation Regime. M. Aichele and J. Baschnagel, Eur. Phys. J. E, 5, 245 (2001). Glassy Dynamics of Simulated Polymer Melts: Coherent Scattering and van Hove Correlation Functions. Part II: Dynamics in the α-Relaxation Regime. C. Bennemann, W. Paul, J. Baschnagel, and K. Binder, J. Phys.: Condens. Matter, 11, 2179 (1999). Investigating the Influence of Different Thermodynamic Paths on the Structural Relaxation in a Glass-Forming Polymer Melt. C. Bennemann, J. Baschnagel, W. Paul, and K. Binder, Comput. Theor. Polym. Sci., 9, 217 (1999). Molecular-Dynamics Simulation of a Glassy Polymer Melt: Rouse Model and Cage Effect. J. Baschnagel, C. Bennemann, W. Paul, and K. Binder, J. Phys.: Condens. Matter, 12, 6365 (2000). Dynamics of a Supercooled Polymer Melt Above the Mode-Coupling Critical Temperature: Cage Versus Polymer-Specific Effects. W. Kob and H. C. Andersen, Phys. Rev. E, 51, 4626 (1995). Testing Mode-Coupling Theroy for a Supercooled Binary Lennard-Jones Mixture I: The van Hove Correlation Function. S. H. Chong and M. Fuchs, Phys. Rev. Lett., 88, 185702 (2002). Mode-Coupling Theory for Structural and Conformational Dynamics of Polymer Melts. M. Aichele, S. H. Chong, J. Baschnagel, and M. Fuchs, Phys. Rev. E, 69, 061801 (2004). Static Properties of a Simulated Supercooled Polymer Melt: Structure Factors, Monomer Distributions Relative to the Center of Mass, and Triple Correlation Functions. R. J. Roe, J. Chem. Phys., 100, 1610 (1994). Short Time Dynamics of Polymer Liquid and Glass Studied by Molecular Dynamics Simulation. D. J. Rigby and R. J. Roe, in Computer Simulation of Polymers, R. J. Roe, Ed., Prentice Hall, Englewood Cliffs, NJ, 1991. pp. 79–93. Local Chain Motion Studied by Molecular Dynamics Simulation of Polymer Liquid and Glass. R. J. Roe, J. Non-Cryst. Solids, 235–237, 308 (1998). Molecular Dynamics Simulation Study of Short Time Dynamics in Polystyrene. O. Okada and H. Furuya, Polymer, 43, 971 (2002). Molecular Dynamics Simulation of cis-1,4-Polybutadiene. 1. Comparison With Experimental Data for Static and Dynamic Properties. O. Okada, H. Furuya, and T. Kanaya, Polymer, 43, 977 (2002). Molecular Dynamics Simulation of cis-1,4-Polybutadiene. 2. Chain Motion and Origin of the Fast Process. T. Kanaya, K. Kaji, and K. Inoue, Macromolecules, 24, 1826 (1991). Local Motions of cis-1,4-Polybutadiene in the Melt. A Quasielastic Neutron-Scattering Study. K. Inoue, T. Kanaya, S. Ikeda, K. Kaji, M. Shibata, and Y. Kiyanagi, J. Chem. Phys., 95, 5332 (1991). Low-Energy Excitations in Amorphous Polymers. A. van Zon and S. W. de Leeuw, Phys. Rev. E, 58, R4100 (1998). Structural Relaxations in Glass Forming Poly(butadiene): A Molecular Dynamics Study. A. van Zon and S. W. de Leeuw, Phys. Rev. E, 60, 6942 (1999). Self-Motion in Glass-Forming Polymers: A Molecular Dynamics Study. A. V. Lyulin and M. A. J. Michels, Macromolecules, 35, 1463 (2002). Molecular Dynamics Simulation of Bulk Atactic Polystyrene in the Vicinity of Tg. A. V. Lyulin, N. K. Balabaev, and M. A. J. Michels, Macromolecules, 35, 9595 (2002). Correlated Segmental Dynamics in Amorphous Atactic Polystyrene: A Molecular Dynamics Simulation Study. A. V. Lyulin, J. de Groot, and M. A. J. Michels, Macromol. Symp., 191, 167 (2003). Computer Simulation Study of Bulk Atactic Polystyrene in the Vicinity of the Glass Transition. G. D. Smith, D. Y. Yoon, C. G. Wade, D. O'Leary, A. Chen, and R. L. Jaffe, J. Chem. Phys., 106, 3798 (1997). Dynamics of Poly(oxyethylene) Melts: Comparison of 13C Nuclear Magnetic Resonance Spin-Lattice Relaxation and Dielectric Relaxation as Determined from Simulations and Experiments. Y. Jin and R. H. Boyd, J. Chem. Phys., 108, 9912 (1998). Subglass Chain Dynamics and Relaxation in Polyethylene: A Molecular Dynamics Simulation Study. S. U. Boyd and R. H. Boyd, Macromolecules, 34, 7219 (2001). Chain Dynamics and Relaxation in Amorphous Poly(ethylene terephthalate): A Molecular Dynamics Simulation Study. O. Borodin, D. Bedrov, and G. D. Smith, Macromolecules, 35, 2410 (2002). Molecular Dynamics Simulation Study of Dielectric Relaxation in Aqueous Poly(ethylene oxide) Solutions. G. D. Smith, O. Borodin, and W. Paul, J. Chem. Phys., 177, 10350 (2002). A Molecular-Dynamics Simulation Study of Dielectric Relaxation in a 1,4-Polybutadiene Melt. O. Borodin, R. Douglas, G. D. Smith, F. Trouw, and S. Petrucci, J. Phys. Chem. B, 107, 6813 (2003). MD Simulations and Experimental Study of Structure, Dynamics, and Thermodynamics of Poly(ethylene oxide) and its Oligomers. M. Doxastakis, D. N. Theodorou, G. Fytas, F. Kremer, R. Faller, F. Müller-Plathe, and N. Hadjichristidis, J. Chem. Phys., 119, 6883 (2003). Chain and Local Dynamics of Polyisoprene as Probed by Experiments and Computer Simulations. G. D. Smith, W. Paul, D. Y. Yoon, A. Zirkel, J. Hendricks, D. Richter, and H. Schober, J. Chem. Phys. 107, 4751 (1997). Local Dynamics in a Long-Chain Alkane Melt from Molecular Dynamics Simulations and Neutron Scattering Experiments. G. D. Smith, W. Paul, M. Monkenbusch, and D. Richter, Chem. Phys., 261, 61 (2000). A Comparison of Neutron Scattering Studies and Computer Simulations of Polymer Melts. M. L. Saboungi, D. L. Price, G. M. Mao, R. Fernandez-Perea, O. Borodin, G. D. Smith, M. Armand, and W. S. Howells, Solid State Ionics, 147, 225 (2002). Coherent Neutron Scattering from PEO and a PEO-Based Polymer Electrolyte. J. Colmenero, A. Arbe, F. Alvarez, M. Monkenbusch, D. Richter, B. Farago, and B. Frick, J. Phys. Condens. Matter, 15, S1127 (2003). Self-Motion and the α-Relaxation in Glass-Forming Polymers. Molecular Dynamic Simulation and Quasielastic Neutron Scattering Results in Polyisoprene. O. Ahumada, D. N. Theodorou, A. Triolo, V. Arrighi, C. Karatasos, and J.-P. Ryckaert, Macromolecules, 35, 7110 (2002). Segmental Dynamics of Atactic Polypropylene as Revealed by Molecular Simulations and Quasielastic Neutron Scattering. J. Colmenero, A. Arbe, F. Alvarez, A. Narros, M. Monkenbusch, and D. Richter, Europhys. Lett., 71, 262 (2005). The Decisive Influence of Local Chain Dynamics on the Overall Dynamic Structure Factor Close to the Glass Transition. G. D. Smith, D. Y. Yoon, W. Zhu, and M. D. Ediger, Macromolecules, 27, 5563 (1994). Comparison of Equilibrium and Dynamic Properties of Polymethylene Melts of n-C44H90Chains from Simulations and Experiments. S. J. Antoniadis, C. T. Samara, and D. N. Theodorou, Macromolecules, 31, 7944 (1998). Molecular Dynamics of Atactic Polypropylene Melts. X. H. Qiu and M. D. Ediger, Macromolecules, 33, 490 (2000). Local and Global Dynamics of Unentangled Polyethylene Melts by 13C NMR. G. D. Smith, O. Borodin, D. Bedrov, W. Paul, X. H. Qiu, and M. D. Ediger, Macromolecules, 34, 5192 (2001). 13C NMR Spin-Lattice Relaxation and Conformational Dynamics in a 1,4-Polybutadiene Melt. D. J. Gisser, S. Glowinkowski, and M. D. Ediger, Macromolecules, 24, 4270 (1991). Local Dynamics of Polyisoprene in Toluene. S. Krushev, W. Paul, and G. D. Smith, Macromolecules, 35 198 (2002). The Role of Internal Rotational Barriers in Polymer Melt Chain Dynamics. D. Bedrov and G. D. Smith, J. Chem. Phys., 115, 1121 (2001). Exploration of Conformational Phase Space in Polymer Melts: A Comparison of Parallel Tempering and Conventional Molecular Dynamics Simulations. A. Arbe, D. Richter, J. Colmenero, and B. Farago, Phys. Rev. E, 54, 3853 (1996). Merging of the α and β Relaxations in Polybutadiene: A Neutron Spin Echo and Dielectric Study. A. Aouadi, M. J. Lebon, C. Dreyfus, B. Strube, W. Steffen, A. Patkowski, and R. M. Pick, J. Phys.: Condens. Matter, 9, 3803 (1997). A Light-Scattering Study of 1,4-cis-trans Polybutadiene. F. Stickel, E. W. Fischer, and R. Richert, J. Chem. Phys., 102, 6251 (1995). Dynamics of Glass-Forming Liquids: I. Temperature Derivative Analysis of Dielectric Relaxation Data. F. Stickel, E. W. Fischer, and R. Richert, J. Chem. Phys., 104, 2043 (1996). Dynamics of Glass-Forming Liquids: II. Detailed Comparison of Dielectric Relaxation, DC-Conductivity and Viscosity Data. W. Paul, D. Bedrov, and G. D. Smith, Phys. Rev. E, 74, 021501 (2006) The Glass Transition in 1,4-Polybutadiene: Mode-Coupling Theory Analysis of Molecular Dynamics Simulations Using a Chemically Realistic Model. B. Frick, B. Farago, and D. Richter, Phys. Rev. Lett., 64, 2921 (1990). Temperature Dependence of the Nonergodicity Parameter in Polybutadiene in the Neighborhood of the Glass Transition. G. D. Smith and D. Bedrov, J. Polym. Sci. B: Polym. Phys., 45, 627 (2007). Relationship between the k- and β-Relaxation Processes in Amorphous Polymers: Insight from Atomistic Molecular Dynamics Simulations of 1,4-polybutadiene Melts and Blends. H. Sillescu, J. Non-Cryst. Solids 243, 81 (1999). Heterogeneity at the Glass Transition: A Review. M. D. Ediger, Annu. Rev. Phys. Chem., 51, 99 (2000). Spatially Heterogeneous Dynamics in Supercooled Liquids. R. Richert, J. Phys. Condens. Matter, 14, R703 (2002). Heterogeneous Dynamics in Liquids: Fluctuations in Space and Time. E. Donth, The Glass Transition: Relaxation Dynamics in Liqids and Disordered Materials, Springer, Berlin, 2001. U. Tracht, M. Wilhelm, A. Heuer, H. Feng, K. Schmidt-Rohr, and H. W. Spiess, Phys. Rev. Lett., 81, 2727 (1998). Length Scale of Dynamic Heterogeneities at the Glass Transition Determined by Multidimensional Nuclear Magnetic Resonance. J. P. Bouchaud and G. Biroli, Phys. Rev. B, 72, 064204 (2005). Nonlinear Susceptibility in Glassy Systems: A Probe for Cooperative Dynamical Length Scales. L. Berthier, G. Biroli, J. P. Bouchaud, L. Cipelletti, D. El Masri, D. L'Hote, F. Ladieu, and M Perino, Science, 310, 1797 (2005). Direct Experimental Evidence of a Growing Length Scale Accompanying the Glass Transition. W. Kob, C. Donati, S. J. Plimpton, P. H. Poole, and S. C. Glotzer, Phys. Rev. Lett., 79, 2827 (1997). Dynamical Heterogeneities in a Supercooled Lennard–Jones Liquid. C. Donati, J. F. Douglas, W. Kob, S. J. Plimpton, P. H. Poole, and S. C. Glotzer, Phys. Rev. Lett., 80, 2338 (1998). Stringlike Cooperative Motion in a Supercooled Liquid. C. Bennemann, C. Donati, J. Baschnagel, and S. C. Glotzer, Nature (London), 399, 246 (1999). Growing Range of Correlated Motion in a Polymer Melt on Cooling Towards the Glass Transition. Y. Gebremichael, T. B. Schrßder, F. W. Starr, and S. C. Glotzer, Phys. Rev. E, 64, 051503 (2001). Spatially Correlated Dynamics in a Simulated Glass-Forming Polymer Melt: Analysis of Clustering Phenomena. M. Aichele, Y. Gebremichael, F. W. Starr, J. Baschnagel, and S. C. Glotzer, J. Chem. Phys., 119, 5290 (2003). Polymer-Specific Effects of Bulk Relaxation and Stringlike Correlated Motion in the Dynamics of a Supercooled Polymer Melt. S. Krushev, Computersimulationen zur Dynamik und Statik von Polybutadienschmelzen, Dissertation, University of Mainz, 2002. E. G. Kim and W. L. Mattice, J. Chem. Phys., 117, 2389 (2002). Radial Aspect of Local Dynamics in Polybutadiene Melts as Studied by Molecular Dynamics Simulation: To Hop or not to Hop. R. H. Boyd, R. H. Gee, J. Han, and Y. Jin, J. Chem. Phys., 101, 788 (1994). Conformational Dynamics in Bulk Polyethylene: A Molecular Dynamics Simulation Study. O. Borodin, and G. D. Smith, Macromolecules, 33, 2273 (2000). Molecular Dynamics Simulations of Poly(ethylene oxide)/LiI Melts. 2. Dynamic Properties. G. D. Smith, D. Y. Yoon, and R. L. Jaffe, Macromolecules, 28, 5897 (1995). Long-Time Molecular Motions and Local Chain Dynamics in n-C44H90 Melts by Molecular Dynamics Simulations. W. Jin and R. H. Boyd, Polymer, 43, 503 (2002). Time Evolution of Dynamic Heterogeneity in a Polymeric Glass: A Molecular Dynamics Simulation Study. K. Yoshimoto, T. S. Jain, K. V. Workum, P. F. Nealey, and J. J. de Pablo, Phys. Rev. Lett., 93, 175501 (2004). Mechanical Heterogeneities in Model Polymer Glasses at Small Length Scales. D. Bedrov and G. D. Smith, Macromolecules, 38, 10314 (2005). A Molecular Dynamics Simulation Study of Relaxation Processes in the Dynamical Fast Component of Miscible Polymer Blends. D. Bedrov and G. D. Smith, Phys. Rev. E, 71, 050801 (R) (2005). Molecular Dynamics Simulation Study of the α- and β-Relaxation Processes in a Realistic Model Polymer. W. van Megen and P. N. Pusey, Phys. Rev. A, 43, 5429 (1991). Dynamic Light-Scattering Study of the Glass Transition in a Colloidal Suspension. J. Horbach and W. Kob, Phys. Rev. E, 64, 041503 (2001). Relaxation Dynamics of a Viscous Silica Melt: The Intermediate Scattering Functions. Citing Literature Reviews in Computational Chemistry, Volume 25 ReferencesRelatedInformation
Referência(s)