Microbial Indicators of Soil Quality
2013; Linguagem: Inglês
10.2136/sssaspecpub35.c5
ISSN2165-9826
AutoresRonald F. Turco, Ann C. Kennedy, M. D. Jawson,
Tópico(s)Heavy metals in environment
ResumoChapter 5 Microbial Indicators of Soil Quality R. F. Turco, R. F. Turco Laboratory for Soil Microbiology Purdue University, West Lafayette, IndianaSearch for more papers by this authorA. C. Kennedy, A. C. Kennedy USDA-ARS, Pullman, WashingtonSearch for more papers by this authorM. D. Jawson, M. D. Jawson Kerr Laboratory USEPA, Ada, OklahomaSearch for more papers by this author R. F. Turco, R. F. Turco Laboratory for Soil Microbiology Purdue University, West Lafayette, IndianaSearch for more papers by this authorA. C. Kennedy, A. C. Kennedy USDA-ARS, Pullman, WashingtonSearch for more papers by this authorM. D. Jawson, M. D. Jawson Kerr Laboratory USEPA, Ada, OklahomaSearch for more papers by this author Book Editor(s):J.W. Doran, J.W. DoranSearch for more papers by this authorD.C. Coleman, D.C. ColemanSearch for more papers by this authorD.F. Bezdicek, D.F. BezdicekSearch for more papers by this authorB.A. Stewart, B.A. StewartSearch for more papers by this author First published: 01 May 1994 https://doi.org/10.2136/sssaspecpub35.c5Citations: 20Book Series:SSSA Special Publications AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary The quality of soil can impact land use, sustainability, and productivity. Human and animal health is closely linked to soil productivity and environmental quality. Soil microbial processes are an integral part of soil quality, and a better understanding of these processes and microbial community structure is needed. Assessment of microbial diversity may indicate profound differences in soils with respect to microbial populations and functions. The most obvious attempt at developing microbial indicators for use in environmental assessment is coliform bacteria. To provide a better understanding of the role of soil microbiology in soil quality, it is necessary to discuss the methods that best address and estimate microbial form and function in soil. Microbial diversity indices can function as bio-indicators by showing the community stability and describing the ecological dynamics of a community and impacts of stress on that community. References Alef,K.,T.Beck,L.Zelles, andD.Kleiner.1988.A comparison of methods to estimate microbial biomass and N-mineralization in agricultural and grassland soils.Soil Biol. Biochem. 20: 561–565. 10.1016/0038-0717(88)90073-9 CASWeb of Science®Google Scholar Anderson,J.P.E., andK.H.Domsch.1978.A physiological method for the quantitative measurement of microbial biomass in soils.Soil Biol. Biochem. 10: 215–221. 10.1016/0038-0717(78)90099-8 CASWeb of Science®Google Scholar Anderson,T.H., andK.H.Domsch.1985.Maintenance requirements of actively metabolizing microbial populations under in situ conditions.Soil. Biol. Biochem. 17: 197–203. 10.1016/0038-0717(85)90115-4 CASWeb of Science®Google Scholar Anderson,T.H., andK.H.Domsch.1990.Application of eco-physiological quotients (qCO2 andqD) on microbial biomasses from soils of different cropping histories.Soil Biol. Biochem. 22: 251–255. 10.1016/0038-0717(90)90094-G Web of Science®Google Scholar Atlas,R.M.1984a. Use of microbial diversity measurements to assess enviornmental stress. p. 540–545.In C.A. Reddy, and M.J. Klug (ed.) Current perspectives in microbial ecology.Am. Soc. for Microbiol,Washington, DC. Google Scholar Balkwill,D.L.,F.R.Leach,J.T.Wilson,J.F.McNabb, andD.C.White.1988.Equivalence of microbial biomass measures based on membrane lipid and cell wall components, adenosine, triphosphate and direct counts in subsurface aquifer sediments.Microb. Ecol. 16: 73–84. 10.1007/BF02097406 CASPubMedWeb of Science®Google Scholar Bej,A.K.,J.L.Dicesare,L.Haff, andR.M.Atlas.1991.Detection ofEscherichia coli andShigella spp. in water by using the polymerase chain reaction and gene probes foruid.Appl. Environ. Microbiol. 57: 1013–1017. CASPubMedWeb of Science®Google Scholar Bej,A.K.,S.C.McCarty, andR.M.Atlas.1990.Detection of coliform bacteria andEscherichia coli by multiplex polymerase chain reaction: comparison with defined substrate and plating methods for water quality monitoring.Appl. Environ. Microbiol. 56: 2429–2432. Google Scholar Bobbie,R.J., andD.C.White.1980.Characterization of benthic microbial community structure by high-resolution gas chromatography of fatty acid methyl esters.Appl. Environ. Microbiol. 39: 1212–1222. CASPubMedWeb of Science®Google Scholar Bolton,H.,L.F.Elliott,R.I.Papendick, andD.F.Bezdicek.1985.Soil microbial biomass and selected soil enzyme activities: Effects of fertilization and cropping practices.Soil Biol. Biochem. 17: 297–302. 10.1016/0038-0717(85)90064-1 CASWeb of Science®Google Scholar Brock,T.D., andM.T.Madigan.1991. Major microbial disease. p. 556–557. In Biology of microorganisms. 6th edPrentice Hall, Englewood Cliffs,NJ. Google Scholar Brockman,F.J., andD.F.Bezdicek.1989.Diversity of serogroups ofRhizobium leguminosarum biovarviceae in the Palouse region of Eastern Washington as indicated by plasmid profiles, intrinsic antibiotic resistance and topography.Appl. Environ. Microbiol. 55: 109–115. CASPubMedWeb of Science®Google Scholar Bruce,K.D.,W.D.Hiorns,J.L.Hobman,A.M.Osborn,P.Strike, andD.A.Ritchie.1992.Amplification of DNA from native populations of soil bacteria using polymerase chain reaction.Appl. Environ. Microbiol. 58: 3413–3416. CASPubMedWeb of Science®Google Scholar Burns,R.G.1978. Soil enzymes.Academic Press,New York. 10.1007/BF01922997 Web of Science®Google Scholar Byrd,J.J.,H.-S.Xu, andR.R.Colwell.1991.Viable but nonculturable bacteria in drinking water.Appl. Environ. Microbiol. 57: 875–878. 10.1128/AEM.57.3.875-878.1991 CASPubMedWeb of Science®Google Scholar Calabrese,V.G.M.,W.E.Holben, andA.J.Sexstone.1991. Assessment of diversity of 2,4-D-catabolic plasmids in bacteria isolated from different soils. p. 260. In Agronomy abstracts.ASA, Madison,WI. Google Scholar Clark,F.E.1965. The concept of competition in microbial ecology. p. 339–344.In K.F. Baker, and W.C. Snyder (ed.) Ecology of soil-borne plant pathogens.Univ. of California Press,Berkeley, CA. Google Scholar Collins,M.D., andD.Jones.1981.Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication.Microbiol. Rev. 45: 316–354. 10.1128/MMBR.45.2.316-354.1981 CASPubMedWeb of Science®Google Scholar Cundell,A.M.1977.The role of microorganisms in the revegetation of strip-mined land in the western United States.J. Range Manage. 30: 229–305. 10.2307/3897311 Google Scholar DeBoer,S.H., andM.Sasser.1986.Differentiation ofErwinia carotovora spp.carotovora andE. carotovora spp.atrosptica on the basis of fatty acid composition.Can. J. Microbiol. 32: 796–800. 10.1139/m86-146 CASWeb of Science®Google Scholar Dick,W.A.1984.Influence of long-term tillage and crop rotation combinations on soil enzyme activities.Soil Sci. Soc. Am. J. 48: 569–584. 10.2136/sssaj1984.03615995004800030020x CASWeb of Science®Google Scholar Doran,J.W.1980.Soil microbial and biochemical changes associated with reduced tillage.Soil Sci. Soc. Am. J. 44: 765–771. 10.2136/sssaj1980.03615995004400040022x CASWeb of Science®Google Scholar Doran,J.W.,D.G.Fraser,M.N.Culik, andW.C.Liebhart.1987.Influence of alternative and conventional agriculture management on soil microbial processes and nitrogen availability.Am. J. Altern. Agric. 2: 99–106. Google Scholar Drucker,D.B.1976.Gas-liquid chromatographic chemotaxonomy.Methods Microbiol. 9: 51–125. 10.1016/S0580-9517(09)70040-6 CASGoogle Scholar EMAP Monitor.1992. Design of comprehensive monitoring program. USEPA Rep. 600/M-91.051. USEPA,Washington, DC. Google Scholar Fahy,P.C., andA.C.Hayward.1983. Media and methods for isolation and diagnostic tests.In P.G. Fahy A.C. Hayward (ed.) p. 337–378. Plant and bacterial diseases: A diagnostic guide.Academic Press,New York. Google Scholar Federle,T.W.1988.Mineralization of monosubstituted aromatic compounds in unsaturated and saturated subsurface soils.Can. J. Microbiol. 34: 1037–1042. 10.1139/m88-182 CASWeb of Science®Google Scholar Findlay,R.H.,G.King, andL.Watling.1989.Efficacy of phospholipid analysis in determining microbial biomass in sediments.Appl. Environ. Microbiol. 55: 2888–2893. 10.1128/AEM.55.11.2888-2893.1989 CASPubMedWeb of Science®Google Scholar Findlay,R.H.,M.B.Trexler,J.B.Guckert, andD.C.White.1990.Laboratory study of disturbance in marine sediments: Response of microbial community.Marine Ecol. Prog. Ser. 62: 121–133. 10.3354/meps062121 Web of Science®Google Scholar .1983. S.B. Flexner The Random House dictionary of English language. 2nd edRandom House,New York. Google Scholar Frankland,J.C.,D.K.Lindley, andM.J.Swift.1978.A comparison of two methods for the estimation of mycelial biomass in leaf litter.Soil Biol. Biochem. 10: 323–333. 10.1016/0038-0717(78)90030-5 Web of Science®Google Scholar Fredrickson,J.K.,D.L.Balkwill,J.M.Zachara,S.M.W.Li,F.J.Brockman, andM.A.Simmons.1991.Physiological diversity and distributions of heterotrophic bacteria in deep cretaceous sediments of the Atlantic coastal plain.Appl. Environ. Microbiol. 57: 402–411. 10.1128/AEM.57.2.402-411.1991 CASPubMedWeb of Science®Google Scholar Frederickson,J.K.,D.F.Bezdicek,F.E.Brockman, andS.W.Li.1988.Enumeration ofTn5 mutant bacteria in soil by most-probable-number DNA hybridization procedure and antibiotic resistance.Appl. Environ. Microbiol. 54: 446–453. PubMedWeb of Science®Google Scholar Fresquez,R.R.,E.F.Aldon, andW.C.Lindemann.1986.Microbial diversity of fungal genera in reclaimed coal mine spoils and soils.Reclam. Reveg. Res. 4(3): 245–258. Google Scholar Garland,J.L., andA.L.Mills.1991.Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level-sole-carbon-source utilization.Appl. Environ. Microbiol. 57: 2351–2359. 10.1128/AEM.57.8.2351-2359.1991 CASPubMedWeb of Science®Google Scholar Goldfine,H.1972. Comparative aspects of bacterial lipids. p. 1–51.In A.H. Rose, and D.W. Tempest (ed.) Advances in microbial physiology.Academic Press,New York. Google Scholar Goor,M. J.,L.Mergaert,C.Verdonck,R.Ryckaert,J.Vantomme,K.Swings,J.Kersters, andLeyDe.1984.The use of API systems in the identification of phytopathogenic bacteria.Med. Fac. Landbouwwetl. Rijksuniv. Gent. 49: 499–507. Google Scholar Graham,J.H.,J.S.Hartung,R.E.Stall, andA.R.Chase.1990.Pathological restriction-fragment length polymorphism, and fatty acid profile relationships betweenXanthomonas campestris from citrus and noncitrus hosts.Phytopathol. 80: 829–836. 10.1094/Phyto-80-829 CASWeb of Science®Google Scholar Guckert,J.B., andD.C.White.1986. Phospholipid, ester-linked fatty acid analysis in microbial ecology. p. 455–459.in F. Megusar, and M. Gantar (ed.) Perspectives in microbial ecology. Proc. of the 4th Int. Symp. of Microbial Ecology, Ljubljana, Yugoslavia. 24-29 Aug. 1986. Google Scholar Hawksworth,D.L., andL.A.Mound.1991. Biodiversity database: The crucial significance of collections. p. 17–31.In D.L. Hawksworth (ed.) The biodiversity of microorganism and invertebrates: Its role in sustainable agriculture.CAB International,Wallingford Oxon, UK. Google Scholar Holben,W.E.,J.K.Jansson,B.K.Chelm, andJ.M.Tiedje.1988.DNA probe method for the detection of specific microorganisms in the soil bacterial community.Appl. Environ. Microbiol. 54: 703–711. 10.1128/AEM.54.3.703-711.1988 CASPubMedWeb of Science®Google Scholar Holloway,J.D.1985.Moths as indicator organisms for categorizing rain forest and monitoring changes and regeneration processes. p. 235–242.In A.C. Chadwick and S.L. Sutton (ed.)Tropical rain-forest. Leeds Philosophical and Literary Society, Leeds. Google Scholar Holloway,J.D., andN.E.Stork.1991. The dimension of biodiversity: The use of invertebrates as indicators of human impact. p. 37–63.In D.L. Hawksworth (ed.) The biodiversity of microorganism and invertebrates: Its role in sustainable agriculture.CAB International,Wallingford, Oxon, UK. Google Scholar Holm,E., andV.Jensen.1980.Microfungi of a Danish beech forest.Holarctic Ecol. 3(1): 19–25. Google Scholar Hugh,R., andE.Leifson.1953.The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram bacteria.J. Bacteriol. 66: 24–26. 10.1128/JB.66.1.24-26.1953 CASPubMedWeb of Science®Google Scholar Insam,H., andK.H.Domsch.1988.Relationship between soil organic carbon and microbial biomass on chronosequences of reclamation sites.Microbiol. Ecol. 15: 177–188. 10.1007/BF02011711 Web of Science®Google Scholar Insam,H., andK.Hasselwandter.1989.Metabolic quotient of the soil microfloral in relation to plant succession.Oecologia. 79: 174–178. 10.1007/BF00388474 CASPubMedWeb of Science®Google Scholar Jenkinson,D.S.1988. Determination of microbial carbon and nitrogen in soil. p. 368–386.In J.B. Wilson (ed.)Advances in nitrogen cycling. CAB International,Wallingford, England. Google Scholar Jenkinson,D.S., andJ.M.Ladd.1981. Microbial biomass in soil: Movement and turnover p. 415–471.In E.A. Paul and J.M. Ladd (ed.) Soil biochemistry.Marcel Dekker,New York. Google Scholar Jensen,V.1968. The plate count technique. p. 158–170.In T.R.G. Gray, and D. Parkinson (ed.) The ecology of soil bacteria.University Press, Liverpool,England. Web of Science®Google Scholar Johnson,K.G.,M.C.Silva,C.R.MacKenzie,H.Schneider, andJ.D.Fontana.1989.Microbial degradation of hemicellulosic materials.Appl. Biochem. Biotech. 20: 245–258. 10.1007/BF02936486 Web of Science®Google Scholar Josephson,K.L.,S.D.Pillai,J.Way,C.P.Gerba, andI.L.Pepper.1991.Fecal coliforms in soil detected by polymerase chain reaction and DNA-DNA hybridizaiton.Siol Sci. Soc. Am. J. 55: 1326–1332. 10.2136/sssaj1991.03615995005500050022x CASWeb of Science®Google Scholar Kamicker,B.J., andW.J.Brill.1986.Identification ofBradyrhizobium japonicum nodule isolates from Wisconsin soybean farms.Appl. Environ. Microbiol. 51: 487–492. PubMedWeb of Science®Google Scholar Knapp.C.M.,D.R.Marmorek,J.P.Baker,K.W.Thornton, andJ.M.Klopatek.1991. Indicator development strategy for the environmental monitoring and assessment program.USEPA Rep. 600/3-91/023. USEPA,Corvallis, OR. Google Scholar Konopka,A., andR.F.Turco.1991.Biodegradation of organic compounds in vadose zone and aquifer sediments.Appl. Environ. Microbiol. 57: 2260–2268. 10.1128/AEM.57.8.2260-2268.1991 CASPubMedWeb of Science®Google Scholar Krieg,N.R., andJ.G.Holt.1984. Bergey's manual of systematic bacteriology.Williams & Wilkens,Baltimore, MD. 1 Google Scholar Kuhn,I.,G.Allestam,T.A.Stenstrom, andR.Mollby.1991.Biochemical fingerprinting of water coliform bacteria, a new method for measuring phenotypic diversity and for comparing different bacterial populations.Appl. Environ. Microbiol. 57: 3171–3177. PubMedWeb of Science®Google Scholar Ladd,J.N.1985. Soil enzymes. p. 175–221.In D. Vaughan, and R.E. Malcolm (ed.) Soil organic matter and biological activity.Nijhoff and Junk Publ., The Hague,Netherlands. 10.1007/978-94-009-5105-1_6 Google Scholar Lambert,B.,P.Meire,H.Joos,P.Lens, andJ.Swings.1990.Fast-growing, aerobic, heterotrophic bacteria from the rhizosphere of young sugar beet plants.Appl. Environ. Microbiol. 56: 3381–3381. Google Scholar Lambshed,P.J.D.,H.M.Platt, andK.M.Shaw.1983.The detection of differences among assemblages of marine benthic species based on an assessment of dominance and diversity.J. Nat. Hist. 17: 859–874. Google Scholar Lechevalier,M.P.1977.Lipids in bacterial taxonomy—a taxonomist's view.Crit. Rev. Microbiol. 5: 109–210. 10.3109/10408417709102311 CASPubMedWeb of Science®Google Scholar Lee,K.E.1985. Earthworms: Their ecology and relationships with soils and land use.Academic Press,New York. Google Scholar Lee,K.E.1991. The diversity of soil organisms. p. 72–89.In D.L. Hawksworth (ed.) The biodiversity of microorganisms and invertebrates; Its role in sustainable agriculture.CASAFA Rep. Ser. 4. Redwood Press Ltd.,England. Google Scholar Lenhard,G.1956.Die dehydrogenase—activitat des Bodens als mass für mikroorganis-mentätigkeit im Boden.Z. Pflanzenernaehr. Bodenkd. 73: 1–11. 10.1002/jpln.19560730102 CASGoogle Scholar Lennon,E., andB.T.DeCicco.1991.Plasmids ofPseudomonas cepacia strains of diverse origins.Appl. Environ. Microbiol. 57: 2345–2350. 10.1128/AEM.57.8.2345-2350.1991 CASPubMedWeb of Science®Google Scholar Lipman,J.G.,H.McLean, andH.C.Lint.1916.Sulphur oxidation in soils and its effect on the availability of mineral phosphates.Soil Sci. 1: 533–539. 10.1097/00010694-191606000-00002 CASGoogle Scholar Martin,P.A.W., andR.S.Travers.1989.Worldwide abundance and distribution ofBacillus thuringienisis isolates.Appl. Eviron. Microbiol. 55: 2437–2442. PubMedWeb of Science®Google Scholar Martynuik,S., andG.H.Wagner.1978.Quantitative and qualitative examination of soil microflora associated with different management systems.Soil Sci. 125: 340. Google Scholar May,R.M.1988.How many species are there on earth.Sci. 241: 1441–1449. 10.1126/science.241.4872.1441 CASADSPubMedWeb of Science®Google Scholar McKinley,V.L.,T.W.Federle, andJ.R.Vestal.1982.Effects of hydrocarbons on the plant litter microbiota of an Arctic lake.Appl. Environ. Microbiol. 43: 129–135. CASPubMedWeb of Science®Google Scholar Mergaert,J. L.,K.Verdonck,J.Kersters,J.M.Swings,J.Boeufgras, andLayDe.1984.Numerical taxonomy ofErwinia species using API systems.J. Gen. Microbiol. 130: 1893–1910. Web of Science®Google Scholar Miller,L.T.1982.A single derivitization method for bacterial fatty acid methyl esters including hydroxy acids.J. Clin. Microbiol. 16: 584–586. 10.1128/JCM.16.3.584-586.1982 CASPubMedWeb of Science®Google Scholar Miller,L.T., andT.Berger.1985. Bacteria identification by gas chromatography of whole cell fatty acids. p. 228–241. MIDI Tech. Note 101. MIDI Newark, DE. Google Scholar Miller,W.N., andL.E.CasidaJr..1970.Evidence for muramic acid in soil.Can. J. Microbiol. 16: 299–304. Google Scholar Moorman,T.B.1989.A review of pesticides effects on microorganisms and microbial processes related to soil fertility.J. Prod. Agric. 2: 14–23. 10.2134/jpa1989.0014 Google Scholar Moss,C.,M.A.Lambert, andW.H.Merwin.1974.Comparison of rapid methods for analysis of bacterial fatty acids.Appl. Microbiol. 28: 80–85. CASPubMedWeb of Science®Google Scholar Moss,C.W.1981.Gas-liquid chromatography as an analytical tool in microbiology.J. Chrom. 203: 337–347. 10.1016/S0021-9673(00)80305-2 CASPubMedWeb of Science®Google Scholar Mukherjee,D., andA.C.Gaur.1980.A study of the influence of straw incorporation on soil organic matter maintenance, nutrient release and asymbiotic nitrogen fixation.Zentralbl. Bakteriol. Parasitenkd. Infekttionshr. Hyg. II. 135(8): 663–668. Google Scholar Newell,S.Y.,T.L.Arsuffi, andR.D.Fallon.1988.Fundamental procedures for determining ergosterol content of decaying plant material by liquid chromatography.Appl. Environ. Microbiol. 54: 1876–1879. CASPubMedWeb of Science®Google Scholar Odum,E.P.1969.The strategy of ecosystem development.Science (Washington, DC). 164: 262–270. 10.1126/science.164.3877.262 CASADSPubMedWeb of Science®Google Scholar Office of Technology Assessment.1987. Technologies to maintain biological diversity.OTA,Washington, DC. Google Scholar Picard,C.,C.Ponsonnet,E.Paget,X.Nesme, andP.Simonet.1992.Detection and enumeration of bacteria in soil by direct DNA extraction and polymerase chain reaction.Appl. Environ. Microbiol. 58: 2717–2722. 10.1128/AEM.58.9.2717-2722.1992 CASPubMedWeb of Science®Google Scholar Pillai,S.D.,K.L.Josephson,R.L.Gerba,C.P.Bailey, andI.L.Pepper.1991.Rapid method for processing soil samples for polymerase chain reaction amplification of specific gene sequences.Appl. Environ. Microbiol. 57: 2283–2286. 10.1128/aem.57.8.2283-2286.1991 CASPubMedWeb of Science®Google Scholar Powlson,D.S.,P.C.Brookes, andB.T.Christensen.1987.Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation.Soil Biol. Biochem. 19: 159–164. 10.1016/0038-0717(87)90076-9 CASWeb of Science®Google Scholar Ramsay,A.J.,R.E.Stannard, andG.J.Churchman.1986.Effect of conversion from ryegrass pasture to wheat cropping on aggregation and bacterial populations in a silt loam soil in New Zealand.Aust. J. Soil Res. 24: 253–264. 10.1071/SR9860253 Web of Science®Google Scholar Rao,C.R., andB.Venkateswarlu.1981.Distribution of microorganisms in stabilized and unstabilized sand dunes of the Indian desert.J. Arid Environ. 4: 203–207. Google Scholar et alRao,P.S.C.,K.S.V.Edvardsson,L.T.Ou,R.E.Jessup,P.Nkedi-Kizza, andA.G.Hornsby.1986. Spatial variability of pesticide sorption and degradation parameters. p. 100–115.In W.Y. Garner (ed.) Evaluation of pesticide in groundwater.Am. Chem. Soc,Washington, DC. Google Scholar Ringelberg,D.B.,J.D.Davis,G.A.Smith,S.M.Pfiffner,P.D.Nichols,J.S.Nickels,J.M.Hensen,J.T.Wilson,M.Yates,D.H.Kampbell,H.W.Reed,T.T.Stockdale, andD.C.White.1989.Validation of signature polarlipid fattya cid biomarkers for alkane-utilizing bacteria in soils and subsurface sediments of aquifer materials.FEMS Microb. Eco. 62: 39–50. 10.1111/j.1574-6968.1989.tb03656.x CASWeb of Science®Google Scholar Robertson,G.P.,M.A.Huston,F.C.Evans, andJ.M.Tiedje.1988.Spatial variability in a successional plant community patterns of nitrogen availability.Ecol. 69: 1517–1524. 10.2307/1941649 Web of Science®Google Scholar Roszak,D.B., andR.R.Colwell.1987.Survival strategies of bacteria in the natural environment.Microbiol. Rev. 51: 365–379. 10.1128/mr.51.3.365-379.1987 CASPubMedWeb of Science®Google Scholar Segal,W., andR.L.Mancinelli.1987.Extent of regeneration of the microbial community in reclaimed spent oil shale land.J. Environ. Qual. 16: 44–47. 10.2134/jeq1987.00472425001600010009x Web of Science®Google Scholar Shaw,N.1974.Lipid composition as a guide to the classification of bacteria.Adv. Appl. Microbiol. 17: 63. 10.1016/S0065-2164(08)70555-0 CASPubMedGoogle Scholar Smith,J.L., andE.A.Paul.1989. The significance of soil microbial biomass estimations in soil. Soil biochemistry. Vol. 6.Marcel Dekker,New York. Google Scholar Sommerville,C.C.,I.T.Knight,W.L.Straube, andR.R.Cowell.1989.Simple, rapid method for direct isolation of nucleic acids form aquitic environments.Appl. Environ. Microbiol. 55: 548–554. PubMedWeb of Science®Google Scholar Sorheim,R.,V.L.Torsvik, andJ.Goksoyr.1989.Phenotypical divergence between populations of soil bacteria isolated on different media.Microb. Ecol. 17: 181–192. 10.1007/BF02011852 CASPubMedWeb of Science®Google Scholar Sparling,G.P.1981.Heat output of the soil biomass.Soil Biol. Biochem. 13: 373–376. 10.1016/0038-0717(81)90079-1 CASWeb of Science®Google Scholar Stanier,R.Y.,E.A.Adeleberg, andJ.Ingraham.1976. The microbial world.Prentice-Hall, Englewood Cliffs,NJ. Google Scholar Torsvik,V.,J.Goksoy, andF.L.Daae.1990a.High diversity in DNA of soil bacteria.Appl. Environ. Microbiol. 56: 782–787. 10.1128/AEM.56.3.782-787.1990 CASPubMedWeb of Science®Google Scholar Torsvik,V.,K.Salte,R.Sorheim, andJ.Goksoyr.1990b.Comparison of phenotypic diversity and DNA heterogeneity in a population of soil bacteria.Appl. Environ. Microbiol. 56: 776–781. 10.1128/AEM.56.3.776-781.1990 CASPubMedWeb of Science®Google Scholar Troussellier,M., andP.Legendre.1981.A functional evenness index for microbial ecology.Microb. Ecol. 7: 283–296. 10.1007/BF02341423 CASPubMedWeb of Science®Google Scholar Tsai,Y., andB.H.Olson.Rapid method for direct extraction of DNA from soil and sediments.Appl. Enviorn. Microbiol. 57: 1070–1074. Google Scholar Turco,R.F., andD.F.Bezdicek.1987.Diversity within two serogroups ofRhizobium leguminosarum native to soils in the Palouse of Eastern Washington.Ann. Appl. Biol. 111: 103–114. 10.1111/j.1744-7348.1987.tb01437.x Web of Science®Google Scholar Veldkamp,H.,H.Van Gemerden,W.Harder, andH.J.Laanbroek.1984. Competition among bacteria: An overview. p. 279–290.In M.J. Klug, and CA. Reddy (ed.) Current perspectives in microbial ecology.Am. Soc. for Microbiol,Washington, DC. Google Scholar Visser,S., andD.Parkinson.1992.Soil biological criteria as indicators of soil quality: Soil microorganisms.Am. J. Altern. Agric. 7: 33–37. 10.1017/S0889189300004434 Google Scholar Waaland,M.E., andE.B.Allen.1987.Relationship between VA mycorrhizal fungi and plant cover following surface mining in Wyoming.J. Range. Manage. 40: 272–276. 10.2307/3899096 Google Scholar White,D.C.,W.M.Davis,J.S.Nickels,J.S.King, andR.J.Bobbie.1979.Determination of the sedimentary microbial biomass by extractable lipid phosphate.Oecologia. 40: 51–62. 10.1007/BF00388810 CASADSPubMedWeb of Science®Google Scholar White,D.C., andF.E.Frerman.1967.Extraction, characterization and cellular localization of the lipids ofStaphylococcus aureus.J. Bacteriol. 94: 1854–1857. CASPubMedWeb of Science®Google Scholar Williams,J.G.K.,A.R.Kubelik,K.J.Livak,J.A.Rafalski, andS.V.Tingey.1990.DNA polymorphisms amplified by arbitrary primers are useful as genetic markers.Nucl. Acids Res. 18: 6531–6535. 10.1111/j.1438-8677.1983.tb01717.x CASPubMedWeb of Science®Google Scholar Wilson,E.O.1988. The current state of biological diversity. p. 3–18.In E.O. Wilson (ed.) Biodiversity.National Academy Press,Washington, DC. Google Scholar Zelles,L.,Q.Y.Bai,T.Beck, andF.Beese.1992.Signature fatty acids in phospholipids and lipopolysaccharides as indicators of microbial biomass and community structure in agricultural soils.Soil Biol. Biochem. 24: 317–323. 10.1016/0038-0717(92)90191-Y CASWeb of Science®Google Scholar Citing Literature Defining Soil Quality for a Sustainable Environment, Volume 35 ReferencesRelatedInformation
Referência(s)