Polycondensation and Polyaddition
2005; American Chemical Society; Linguagem: Inglês
10.1002/9783527627219.ch13
ISSN1520-5835
Autores Tópico(s)Advanced Polymer Synthesis and Characterization
ResumoChapter 13 Polycondensation and Polyaddition Hans-Georg Elias, Hans-Georg EliasSearch for more papers by this author Hans-Georg Elias, Hans-Georg EliasSearch for more papers by this author Hans-Georg Elias, Hans-Georg EliasSearch for more papers by this author Book Author(s):Hans-Georg Elias, Hans-Georg EliasSearch for more papers by this author First published: 17 October 2005 https://doi.org/10.1002/9783527627219.ch13Citations: 1 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary Polymer chemistry contrasts "chain polymerization" with "step polymerization" and uses the term "stepwise" exclusively for two other classes of successive reactions, polycondensation and polyaddition. The simplest polycondensations and polyadditions proceed between unlike A and B groups of A functional monomers, either as AB reactions of AB molecules or as AA/BB reactions of AA molecules + BB molecules. Endgroups A and B of linear monomers and polymers can react with other reactants not only intermolecularly to linear polymers but also intramolecularly to form rings. Branching polycondensations and polyadditions are step polymerizations. There are two main groups: those with only one type of monomer and those with two types of monomers. Crosslinked polymers are produced by chain polymerizations or step reactions of monomer molecules with functionalities of 3 or higher or by after-reactions of linear or branched macromolecules. Literature to Chapter 13 13.1 OVERVIEW Google Scholar G.J.Howard, The Molecular Weight Distribution of Condensation Polymers, in J.C. Robb, F.W. Peaker, Eds., Progress in High Polymers 1 (1961) (early competing theories) Google Scholar G.F. Ham, Ed., Kinetics and Mechanism of Polymerizations, Vol. 3, Condensation Polymerization, Dekker, New York 1967 Google Scholar I.B.Sokolov, Synthesis of Polymers by Polycondensation (in Russian), Nauka, Moskau 1966; Israel Program for Scientific Translations, Jerusalem 1968 Google Scholar J.H.Peebles, Jr., Molecular Weight Distributions in Polymers, Wiley, New York 1971 Google Scholar J.K. Stille, T.W. Campbell, Eds., Condensation Monomers, Wiley-Interscience, New York 1972 Google Scholar D.H. Solomon, Ed., Step-Growth Polymerizations, Dekker, New York 1972 Google Scholar G. Allen, J.C. Bevington, Eds., Comprehensive Polymer Science, Vol. 5, G.C. Eastmond, A. Ledwith, S. Russo, P. Sigwalt, Eds., Step Polymerization, Pergamon Press, Oxford 1989 Google Scholar M.E. Rogers, T.E. Long, Eds., Synthetic Methods in Step-Growth Polymers, Wiley-Interscience, Hoboken (NJ) 2003 10.1002/0471220523 Google Scholar C.E.Carraher, Jr., G.G.Swift, Functional Condensation Polymers, Kluwer Academic-Plenum, New York 2003 Google Scholar 13.2-13.3 LINEAR STEP REACTIONS Google Scholar A.M.Kotliar, Interchange Reactions Involving Condensation Polymers, J.Polym.Sci.-Macromol.Revs. 16 (1981) 367 10.1002/pol.1981.230160106 CASWeb of Science®Google Scholar S. Fakirov, Ed., Transreactions in Condensation Polymers, Wiley-VCH, Weinheim 1999 10.1002/9783527613847 Google Scholar 13.4 KINETICS OF LINEAR STEP REACTIONS Google Scholar V.V.Korshak, S.V.Vinogradova, Irreversible Polycondensation (in Russian), Nauka, Moskau 1972 Google Scholar J.H.Saunders, F.Dobinson, The Kinetics of Polycondensation Reactions, in C.H. Bamford, C.F.H. Tipper, Eds., Comprehensive Chemical Kinetics, Vol. 15, Non-Radical Polymerisation, Elsevier, Amsterdam 1976 Google Scholar A.Fradet, E.Maréchal, Kinetics and Mechanisms of Polyesterifications, Adv.Polym.Sci. 43 (1982) 51 10.1007/3-540-11048-8_2 CASWeb of Science®Google Scholar S.K.Gupta, A.Kumar, Reaction Engineering of Step Growth Polymerization, Plenum Press, New York 1987 10.1007/978-1-4613-1801-9 Google Scholar 13.5 REACTIVITIES Google Scholar P.W.Morgan, Condensation Polymers: By Interfacial and Solution Methods, Interscience, New York 1965 Web of Science®Google Scholar A.S.Hay, Polymerization by Oxidative Coupling - A Historical Review, Polym.Eng.Sci. 16 (1976) 1 10.1002/pen.760160102 CASWeb of Science®Google Scholar N.Yoda, M.Kurihara, New Polymers of Aromatic Heterocycles by Polyphosphoric Acid Solution Methods, J.Polym.Sci. D [Macromol.Revs.] 5 (1971) 109 10.1002/pol.1971.230050102 CASGoogle Scholar F. Millich, C.E. Carraher, Eds., Interfacial Synthesis, Dekker, New York 1977 (2 vols.) CASGoogle Scholar N.Yamazaki, F.Higashi, New Condensation Polymerizations by Means of Phosphorus Compounds, Adv.Polym.Sci. 38 (1981) 1 10.1007/3-540-10217-5_1 CASWeb of Science®Google Scholar C.E.Carraher, Jr., J.Preston, Interfacial Synthesis, Vol. III, Dekker, New York 1982 (reprint of papers in J.Macromol.Sci.-Chem. A 15/5) Google Scholar V.Percec, J.H.Wang, R.S.Clough, Mechanisms of the Aromatic Polyetherification Reactions, Makromol.Chem., Macromol.Symp. 54/55 (1992) 275 10.1002/masy.19920540123 Web of Science®Google Scholar 13.6 RING FORMATION Google Scholar N.Yoda, M.Kurihara, N.Dokoshi, New Synthetic Routes to High Temperature Polymers by Cyclocondensation Reactions, Progr.Polym.Sci. 4 (1972) 1 CASGoogle Scholar V.V.Korshak, The Principal Characteristics of Polycyclotrimerization, Vysokomol.Soyed. A 16 (1974) 926; Polym.Sci.USSR 16 (1974) 1066 CASWeb of Science®Google Scholar J.A. Semlyen, Ed., Cyclic Polymers, Elsevier, New York 1986 10.1007/978-94-009-4175-5 Google Scholar 13.7 COPOLYCONDENSATIONS AND COPOLYADDITIONS Google Scholar S.I.Kuchanov, Distribution of Monomer Units in Products of Homogeneous Irreversible Copolycondensation, Vysokomol.Soyed. A 15 (1973) 2140; Polym.Sci.USSR 15 (1973) 2434 Google Scholar V.V.Korshak, S.V.Vinogradova, S.I.Kuchanov, V.A.Vasney, Non-Equilibrium Copolycondensation in Homogeneous Systems, J.Macromol.Sci. [Revs.] C 14 (1976) 27 10.1080/15321797608076112 CASGoogle Scholar J.-C.Bollinger, Characterization of Block Structures in Copolycondensates: A Review, J.Macromol.Sci. [Revs.] C 16 (1977/78) 23 CASGoogle Scholar J.-C.Bollinger, Synthesis and Properties of Block Copolycondensates: A Review of Recent Advances, Progr.Polym.Sci. 9 (1983) 59 10.1016/0079-6700(83)90006-0 CASGoogle Scholar H.A.Nguyen, E.Maréchal, Synthesis of Reactive Oligomers and Their Use in Block Polycondensation, J.Macromol.Sci.-Revs.Macromol.Chem.Phys. C 28 (1988) 187 10.1080/15583728808085377 CASGoogle Scholar 13.4 HYPERBRANCHING REACTIONS Google Scholar J.R.Schaefgen, P.J.Flory, Synthesis of Multichain Polymers and Investigation of Their Viscosities, J.Am.Chem.Soc. 70 (1948) 2709 (system AB + Af) 10.1021/ja01188a026 CASWeb of Science®Google Scholar P.J.Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca (NY), 1953, p. 347 ff. Google Scholar C.W.Macosko, D.R.Miller, A New Derivation of Average Molecular Weights of Nonlinear Polymers, Macromolecules 9 (1976) 199 10.1021/ma60050a003 CASPubMedWeb of Science®Google Scholar H.Tobita, Random Sampling Technique to Predict the Molecular Weight Distribution in Nonlinear Polymerization, Macromol.Theory Simul. 5 (1996) 1167 10.1002/mats.1996.040050110 Google Scholar D.Hölter, H.Frey, Degree of Branching in Hyperbranched Polymers. 2. Enhancement of the DB: Scope and Limitations, Acta Polymerica 48 (1997) 298 10.1002/actp.1997.010480802 Google Scholar U.Beginn, C.Drohmann, M.Möller, Conversion Dependence of the Branching Density for the Polycondensation of ABn Monomers, Macromolecules 30 (1997) 4112 10.1021/ma961734s CASWeb of Science®Google Scholar W.Radke, G.Litvinenko, A.H.E.Müller, Effect of Core-Forming Molecules on Molecular Weight Distribution and Degree of Branching in the Synthesis of Hyperbranched Polymers, Macromolecules 31 (1998) 239 (this paper treats self-condensing vinyl polymerizations) 10.1021/ma970952y CASWeb of Science®Google Scholar 13.9 CROSSLINKING STEP POLYMERIZATIONS Google Scholar P.J.Flory, Introductory Lecture. Gels and Gelling Processes, Faraday Disc.Chem.Soc. 57 (1974) 7 10.1039/dc9745700007 CASWeb of Science®Google Scholar M.Gordon, S.Ross-Murphy, The Structure and Properties of Molecular Trees and Networks, Pure Appl.Chem. 43 (1975) 1 10.1351/pac197543010001 CASWeb of Science®Google Scholar D.R.Miller, C.W.Macosko, A New Derivation of Post Gel Properties of Network Polymers, Macromolecules 9 (1976) 206 10.1021/ma60050a004 CASGoogle Scholar D.Stauffer, Introduction to Percolation Theory, Taylor and Francis, London 1985 10.4324/9780203211595 Google Scholar C.J.Brinker, G.W.Scherer, Sol–gel Science, Academic Press, San Diego 1990 10.1016/B978-0-08-057103-4.50013-1 Google Scholar 13.9.7 CROSSLINKING POST-REACTIONS Google Scholar W.W.Graessley, Entangled Linear, Branched and Network Polymer Systems - Molecular Theories, Adv.Polym.Sci. 30 (1979) 89 Google Scholar L.H.Sperling, Interpenetrating Polymer Networks and Related Materials, Plenum, New York 1981 10.1007/978-1-4684-3830-7 Google Scholar J.E.Mark et al., Polymer Networks, Adv.Polym.Sci. 44 (1982) 1 10.1007/3-540-11471-8_1 CASGoogle Scholar K.Dusek, Formation and Structure of End-Linked Elastomer Networks, Rubber Chem.Technol. 55 (1982) 1 10.5254/1.3535867 CASWeb of Science®Google Scholar D.Stouffer, A.Coniglio, M.Adam, Gelation and Critical Phenomena, Adv.Polym.Sci. 44 (1982) 103 10.1007/3-540-11471-8_4 Google Scholar S.C.Temin, Recent Advances in Crosslinking, J.Macromol.Sci.-Revs.Macromol.Chem.Phys. C 22 (1982/83) 131 10.1080/07366578208081060 CASWeb of Science®Google Scholar S.P. Pappas, Ed., UV Curing: Science and Technology, Technology Marketing Corp., Norwalk (CT), 2 vols., 1978 and 1985 Google Scholar D.J.P.Harrison, W.R.Yates, J.F.Johnson, Techniques for the Analysis of Crosslinked Polymers, J.Macromol.Sci.-Revs.Macromol.Chem.Phys. C 25 (1985) 481 10.1080/07366578508081963 CASGoogle Scholar O. Kramer, Ed., Biological and Synthetic Polymer Networks, Elsevier Appl.Sci., New York 1988 10.1007/978-94-009-1343-1 Google Scholar A. Baumgärtner, C. Picot, Eds., Molecular Basis of Polymer Networks, Springer, Berlin 1989 10.1007/978-3-642-75044-1 Google Scholar O.Guven, Crosslinking and Scission in Polymers, Kluwer, Dordrecht 1990 10.1007/978-94-009-1924-2 Google Scholar W. Burchard, S.B. Ross-Murphy, Eds., Physical Networks, Elsevier Appl.Sci., Amsterdam 1990 Google Scholar C.J.Brinker, G.W.Scherer, Sol-gel Science, Academic Press, San Diego 1990 10.1016/B978-0-08-057103-4.50013-1 Google Scholar D.Stauffer, A.Aharony, Introduction to Percolation Theory, Taylor and Francis, London 1992 Google Scholar M.Sahimi, Appliction of Percolation Theory, Taylor and Francis, London 1994 Google Scholar S.C. Kim, L.H. Sperling, Eds., IPNs Around the World, Wiley, New York 1997 Google Scholar R.F.T. Stepto, Ed., Polymer Networks-Principles of Their Formation, Structure, and Properties, Blackie Academic, Glasgow, UK, 1997 Google Scholar References to Chapter 13 Google Scholar C.Giori, B.T.Hayes, J.Polym.Sci. [A-l] 8 (1970) 335 (Fig. 1), 351 (Fig. 8, Table I) 10.1002/pol.1970.150080206 CASGoogle Scholar P.Matthies, Polyamide, in Ullmanns Enzyklöpadie der Technischen Chemie, Verlag Chemie, Weinheim, 4th ed., 19 (1980) 41 Google Scholar H.-G.Elias, unpublished Google Scholar M.Gordon, W.B.Temple, T.G.Parker, J.A.Love, J.Prakt.Chem. 313 (1971) 411, Fig. 2 10.1002/prac.19713130305 CASWeb of Science®Google Scholar P.J.Flory, J.Am.Chem.Soc. 61 (1939) 3334, Table I 10.1021/ja01267a030 CASGoogle Scholar H.Dostal, R.Raff, Monatsh.Chem. 68 (1936) 188, Table 7 10.1007/BF01518855 CASGoogle Scholar H.-G.Elias, Makromol.Chem. 186 (1985) 847, Fig. 1 10.1002/macp.1985.021860416 CASWeb of Science®Google Scholar B.V.Bhide, J.J.Sudborough, J.Indian Inst.Sci. 8A (1925) 89; as reported by PJ. Flory, Principles of Polymer Chemistry, Cornell Univ. Press, Ithaca (NY) 1953, p. 71 CASGoogle Scholar S.I.Kuchanov, M.L.Keshtov, P.G.Halatur, V.A.Vasnev, S.V.Vinogradova, V.V.Korshak, Makromol.Chem. 184 (1983) 105, Fig. 1 10.1002/macp.1983.021840111 CASWeb of Science®Google Scholar G.-C.Wu, H.Tanaka, K.Sanui, N.Ogata, Polym.J. 14 (1982) 571, Fig. 4 10.1295/polymj.14.571 CASWeb of Science®Google Scholar T.-y.Yu, S.-k.Fu, S.-j.Li, C.-g.Ji, W.-z.Cheng, Polymer 25 (1984) 1363, Figs. 1 and 2 10.1016/0032-3861(84)90392-6 CASWeb of Science®Google Scholar K.Weisskopf, G.Meyerhoff, Eur.Polym.J. 10 (1985) 859, selective data of Fig. 2 10.1016/0014-3057(85)90164-8 Web of Science®Google Scholar H.-G.Elias, J.-H.(L)Tsao, J.Palacios, Makromol.Chem. 186 (1985) 893, Fig. 6 10.1002/macp.1985.021860501 CASWeb of Science®Google Scholar P.W.Morgan, S.L.Kwolek, J.Polym.Sci. 40 (1959) 299, (a) Fig. 10, (b) Table III 10.1002/pol.1959.1204013702 CASWeb of Science®Google Scholar H.-B.Tsai, Y.-D.Lee, J.Polym.Sci. A-Polym.Chem. 25 (1987) 1505, 2195 10.1002/pola.1987.080250605 CASWeb of Science®Google Scholar V.Percec, T.D.Shaffer, J.Polym.Sci. C (Polymer Letters) 24 (1986) 439, Fig. 1–3 10.1002/pol.1986.140240902 CASWeb of Science®Google Scholar A.H.Fawcett, R.A.W.Mee, F.V.McBride, Macromolecules 28 (1995) 1481, Fig. 3 10.1021/ma00109a020 CASWeb of Science®Google Scholar (a)K.Ziegler, R.Aurnhammer, Liebigs Ann.Chem. 513 (1934) 113 (b) K. Ziegler, W. Hechelhammer, Liebigs Ann. Chem. 528 (1937) 114 10.1002/jlac.19345130104 Google Scholar G.Ercolani, L.Mandolini, P.Mencarelli, Macromolecules 21 (1988) 1241, Fig. 2 and additional calculated data 10.1021/ma00183a011 CASWeb of Science®Google Scholar Y.Kawabata, M.Kinoshita, Makromol.Chem. 176 (1975) 2797, data of Table 1 10.1002/macp.1975.021761002 CASWeb of Science®Google Scholar L.F.Beste, J.Polym.Sci. 36 (1959) 313 10.1002/pol.1959.1203613026 CASWeb of Science®Google Scholar U.W.Suter, P.Pino, Macromolecules 17 (1984) 2248, Figs. 1 and 2 10.1021/ma00141a010 CASWeb of Science®Google Scholar S.R.Turner, B.I.Voit, T.H.Mourey, Macromolecules 26 (1993) 4617, Fig. 1 10.1021/ma00069a031 CASWeb of Science®Google Scholar T.M.Miller, T.X.Neenan, E.W.Kwock, S.M.Stein, Macromol.Symp. 77 (1994) 35, data of Table 1 10.1002/masy.19940770107 CASWeb of Science®Google Scholar D.Schmaljohann, H.Komber, J.G.Barratt, D.Appelhans, B.I.Voit, Macromolecules 36 (2003) 97, data of Fig. 4 10.1021/ma020972m CASWeb of Science®Google Scholar C.Cameron, A.H.Fawcett, C.R.Hethrington, R.A.W.Mee, F.C.McBride, ACS Polymer Preprints 38/1 (1997) 56, Fig. 1 Google Scholar J.M.J.Fréchet, M.Henmi, I.Gitsov, S.Aoshima, M.R.Leduc, R.B.Grubbs, Science 269 (25 August 1995) 1080, data of Table 1 10.1126/science.269.5227.1080 CASPubMedWeb of Science®Google Scholar A.H.E.Müller, D.Yan, M.Wulkow, Macromolecules 30 (1997) 7015 (a) Eqs.(21-(23) (b) data of Fig. 1 of [27] 10.1021/ma9619187 CASWeb of Science®Google Scholar A.Sunder, R.Hanselmann, H.Frey, R.Mülhaupt, Macromolecules 32 (1999) 4240, Tables 1 and 2 10.1021/ma990090w CASWeb of Science®Google Scholar P.J.Flory, J.Am.Chem.Soc. 63 (1941) 3083, Fig. 2 10.1021/ja01856a061 CASWeb of Science®Google Scholar J.W.Stafford, J.Polym.Sci.-Chem.Ed. 19 (1901) 3219, Table IX 10.1002/pol.1981.170191216 Web of Science®Google Scholar J.J.Bernardo, P.F.Bruins, J.Paint Technol. 40 (1968) 558, Table 3–6 CASWeb of Science®Google Scholar D.S.Argyropoulos, R.M.Berry, H.I.Bolker, J.Polym.Sci., Part B, Polym.Phys. 25 (1987) 1191; Makromol.Chem. 188 (1987) 1985 10.1002/macp.1987.021880820 CASWeb of Science®Google Scholar D.S.Argyropoulos, R.M.Berry, H.I.Bolker, Macromolecules 20 (1987) 357 (p > pcrit) 10.1021/ma00168a022 CASWeb of Science®Google Scholar N.S.Clarke, C.J.Devoy, M.Gordon, Brit.Polym.J. 3 (1971) 194 (p < pcrit) 10.1002/pi.4980030408 Google Scholar R.H.Colby, M.Rubinstein, J.R.Gillmor, T.H.Mourey, Macromolecules 25 (1992) 7180, Table II 10.1021/ma00052a017 CASWeb of Science®Google Scholar Citing Literature Macromolecules: Volume 1: Chemical Structures and Syntheses ReferencesRelatedInformation
Referência(s)