Artigo Revisado por pares

NFAT-controlled expression of GFP permits visualization and isolation of antigen-stimulated primary human T cells

2000; Elsevier BV; Volume: 96; Issue: 2 Linguagem: Inglês

10.1182/blood.v96.2.459

ISSN

1528-0020

Autores

Erik Hooijberg, Arjen Q. Bakker, Janneke J. Ruizendaal, Hergen Spits,

Tópico(s)

T-cell and B-cell Immunology

Resumo

Abstract We have developed a new method that allows detection and isolation of viable, antigen-specific, human T cells from a heterogeneous pool of T cells. We have engineered a self-inactivating retroviral vector containing multiple (3 or 6) nuclear factor of activated T-cell (NFAT)-binding sites, followed by the minimal IL2 promoter and the reporter gene GFP. Jurkat cells, primary T-cell blasts, and T-cell clones were transduced with high efficiency (20%-40%). Stimulation of the transduced cells with phorbol myristate acetate (PMA) and ionomycin resulted in a high level expression of GFP that was maximal after 12 to 14 hours and remained stable for another 12 hours. Activation of T cells carrying the construct containing 6 NFAT-binding sites resulted in the highest mean fluorescence intensity. Cyclosporin-A and FK506 were able to block the activation-dependent GFP expression. Activation of transduced T-cell blasts with the superantigen staphylococcal enterotoxin B or of transduced antigen-specific T-cell clones with cognate antigen resulted in GFP expression. After an overnight stimulation of a heterogeneous T-cell bulk culture with an HLA mismatched stimulator cell (JY), the GFP expressing cells were cloned. As expected, the cloning frequency of the antigen-specific GFP+ cells was considerably higher than that of the total T-cell population. Most of the T-cell clones were either cytolytic, or proliferative toward JY stimulator cells. Interestingly, we also isolated T-cell clones that were noncytolytic and nonproliferative toward JY cells, but specifically up-regulated GFP after an overnight stimulation with JY.

Referência(s)
Altmetric
PlumX