Probing poly( N -isopropylacrylamide- co -butylacrylate)/cell interactions by atomic force microscopy
2014; Wiley; Volume: 103; Issue: 1 Linguagem: Inglês
10.1002/jbm.a.35163
ISSN1552-4965
AutoresBecerra Natalia, Henry Andrade-Caicedo, López Betty, Luz Marina Restrepo Múnera, Roberto Raiteri,
Tópico(s)Cellular Mechanics and Interactions
ResumoJournal of Biomedical Materials Research Part AVolume 103, Issue 1 p. 145-153 Original Article Probing poly(N-isopropylacrylamide-co-butylacrylate)/cell interactions by atomic force microscopy Becerra Natalia, Becerra Natalia Department of Informatics Bioengineering, Robotics and System Engineering (DIBRIS), University of Genova, Via Opera Pia, 13, Genova, Italy Grupo Ciencia de Materiales. Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia Grupo Ingeniería de Tejidos y Terapia celular Facultad de Medicina Laboratorio Terapia celular y Biobanco, IPS Universitaria, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, ColombiaSearch for more papers by this authorAndrade Henry, Andrade Henry Department of Informatics Bioengineering, Robotics and System Engineering (DIBRIS), University of Genova, Via Opera Pia, 13, Genova, Italy Centro de Bioingeniería; Universidad Pontificia Bolivariana; Circular 1 No. 73–76, Bloque 22C, Medellín, ColombiaSearch for more papers by this authorLópez Betty, López Betty Grupo Ciencia de Materiales. Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, ColombiaSearch for more papers by this authorRestrepo Luz Marina, Restrepo Luz Marina Grupo Ingeniería de Tejidos y Terapia celular Facultad de Medicina Laboratorio Terapia celular y Biobanco, IPS Universitaria, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, ColombiaSearch for more papers by this authorRaiteri Roberto, Corresponding Author Raiteri Roberto Department of Informatics Bioengineering, Robotics and System Engineering (DIBRIS), University of Genova, Via Opera Pia, 13, Genova, ItalyCorrespondence to: R. Roberto; e-mail: [email protected]Search for more papers by this author Becerra Natalia, Becerra Natalia Department of Informatics Bioengineering, Robotics and System Engineering (DIBRIS), University of Genova, Via Opera Pia, 13, Genova, Italy Grupo Ciencia de Materiales. Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia Grupo Ingeniería de Tejidos y Terapia celular Facultad de Medicina Laboratorio Terapia celular y Biobanco, IPS Universitaria, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, ColombiaSearch for more papers by this authorAndrade Henry, Andrade Henry Department of Informatics Bioengineering, Robotics and System Engineering (DIBRIS), University of Genova, Via Opera Pia, 13, Genova, Italy Centro de Bioingeniería; Universidad Pontificia Bolivariana; Circular 1 No. 73–76, Bloque 22C, Medellín, ColombiaSearch for more papers by this authorLópez Betty, López Betty Grupo Ciencia de Materiales. Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, ColombiaSearch for more papers by this authorRestrepo Luz Marina, Restrepo Luz Marina Grupo Ingeniería de Tejidos y Terapia celular Facultad de Medicina Laboratorio Terapia celular y Biobanco, IPS Universitaria, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, ColombiaSearch for more papers by this authorRaiteri Roberto, Corresponding Author Raiteri Roberto Department of Informatics Bioengineering, Robotics and System Engineering (DIBRIS), University of Genova, Via Opera Pia, 13, Genova, ItalyCorrespondence to: R. Roberto; e-mail: [email protected]Search for more papers by this author First published: 12 March 2014 https://doi.org/10.1002/jbm.a.35163Citations: 7Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Poly(N-isopropylacrylamide) based hydrogels have been proposed as cell culture supports in cell sheet engineering. Toward this goal, we characterized the poly(N-isopropylacrylamide-co-butylacrylate) copolymer thermo-sensitivity and the cell/copolymer interactions above and below the copolymer lower critical solution temperature. We did that by direct force measurements at different temperatures using an atomic force microscope with either a polystyrene or a glass microbead as probes. We used a copolymer-coated microbead to measure adhesion after a short contact time with a single fibroblast in culture. Statistical analysis of the maximum adhesion force and the mechanical work necessary to separate the probe from the cell surface confirmed the hydrophilic/hydrophobic behavior of poly(N-isopropylacrylamide-co-butylacrylate) as a function of temperature in the range 20–37°C and, consequently, a reversible increase/decrease in cell adhesion with the copolymer. As control experiments we measured interactions between uncoated microbeads with the copolymer hydrogel or cells as well as interaction of the Poly(N-isopropylacrylamide) homopolymer with cells. These results show the potential of an assay based on atomic force microscopy for an in situ and quantitative assessment of cell/substrate interactions and support the use of poly(N-isopropylacrylamide-co-butylacrylate) copolymer as an efficient culture substrate in cell sheet engineering. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 145–153, 2015. REFERENCES 1 Cho EC, Lee J, Cho K. Role of bound water and hydrophobic interaction in phase transition of poly(N-isopropylacrylamide) aqueous solution. Macromolecules 2003; 36: 9929–9934. 10.1021/ma034851d CASWeb of Science®Google Scholar 2 Serra L, Doménech J, Peppas NA. Engineering design and molecular dynamics of mucoadhesive drug delivery systems as targeting agents. Eur J Pharmaceutics Biopharmaceutics 2009; 71: 519–528. 10.1016/j.ejpb.2008.09.022 CASPubMedWeb of Science®Google Scholar 3 Wood KM, Stone GM, Peppas NA. Wheat germ agglutinin functionalized complexation hydrogels for oral insulin delivery. Biomacromolecules 2008; 9: 1293–1298. 10.1021/bm701274p CASPubMedWeb of Science®Google Scholar 4 da Silva RMP, Mano JF, Reis RL. Smart thermoresponsive coatings and surfaces for tissue engineering: switching cell-material boundaries. Trends Biotechnol 2007; 25: 577–583. 10.1016/j.tibtech.2007.08.014 CASPubMedWeb of Science®Google Scholar 5 Nishida K, Yamato M, Hayashida Y, Watanabe K, Yamamoto K, Adachi E, Nagai S, Kikuchi A, Maeda N, Watanabe H and others. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med 2005; 351: 1187–1196. 10.1056/NEJMoa040455 PubMedWeb of Science®Google Scholar 6 Miyagawa S, Roth M, Saito A, Sawa Y, Kostin S. Tissue-engineered cardiac constructs for cardiac repair. Ann Thorac Surg 2011; 91: 320–329. 10.1016/j.athoracsur.2010.09.080 PubMedWeb of Science®Google Scholar 7 Wuo J-Y, Liu S-Q, Heng PW-S, Yang Y-Y. Evaluating proteins release from, and their interactions with, thermosensitive poly (N-isopropylacrylamide) hydrogels. J Controlled Release 2005; 102: 361–372. 10.1016/j.jconrel.2004.10.008 CASWeb of Science®Google Scholar 8 Becerra N, Restrepo LM, López BL. Synthesis and characterization of a biocompatible copolymer to be used as cell culture support. Macromol Symp 2007; 258: 30–37. 10.1002/masy.200751204 CASWeb of Science®Google Scholar 9 Becerra N, López B, Restrepo L. Thermosensitive behavior in cell culture media and cytocompatibility of a novel copolymer: poly(N-isopropylacrylamide-co-butylacrylate). J Mater Sci Mater Med 2013; 24: 1043–1052. 10.1007/s10856-013-4861-1 CASPubMedWeb of Science®Google Scholar 10 Velzenberger E, Kirat KE, Legeay G, Nagel M-D, Pezron I. Characterization of biomaterials polar interactions in physiological conditions using liquid-liquid contact angle measurements: relation to fibronectin adsorption. Colloids Surf B Biointerfaces 2009; 68: 238–244. 10.1016/j.colsurfb.2008.10.022 CASPubMedWeb of Science®Google Scholar 11 Butt H-J, Cappella B, Kappl M. Force measurements with the atomic force microscope: Technique, interpretation and applications. Surf Sci Rep 2005; 59: 1–152. 10.1016/j.surfrep.2005.08.003 CASWeb of Science®Google Scholar 12 Holuszko ME, Franzidis JP, Manlapig EV, Hampton MA, Donose BC, Nguyen AV. The effect of surface treatment and slime coatings on ZnS hydrophobicity. Minerals Eng 2008; 21: 958–966. 10.1016/j.mineng.2008.03.006 CASWeb of Science®Google Scholar 13 Lee C-K, Wang Y-M, Huang L-S, Lin S. Atomic force microscopy: determination of unbinding force, off rate and energy barrier for protein–ligand interaction. Micron 2007; 38: 446–461. 10.1016/j.micron.2006.06.014 CASPubMedWeb of Science®Google Scholar 14 Taubenberger AV, Hutmacher DW, Muller DJ. Single-cell force spectroscopy, an emerging tool to quantify cell adhesion to biomaterials. Tissue Eng Part B Rev 2013; 10: 10. Google Scholar 15 Vasir JK, Labhasetwar V. Quantification of the force of nanoparticle–cell membrane interactions and its influence on intracellular trafficking of nanoparticles. Biomaterials 2008; 29: 4244–4252. 10.1016/j.biomaterials.2008.07.020 CASPubMedWeb of Science®Google Scholar 16 Lorenz B, Álvarez de Cienfuegos L, Oelkers M, Kriemen E, Brand C, Stephan M, Sunnick E, Yüksel D, Kalsani V, Kumar K, Werz DB, Janshoff A. Model system for cell adhesion mediated by weak carbohydrate–carbohydrate interactions. J Am Chem Soc 2012; 134: 3326–3329. 10.1021/ja210304j CASPubMedWeb of Science®Google Scholar 17 Bershadsky A, Kozlov M, Geiger B. Adhesion-mediated mechanosensitivity: a time to experiment, and a time to theorize. Curr Opin Cell Biol 2006; 18: 472–481. 10.1016/j.ceb.2006.08.012 CASPubMedWeb of Science®Google Scholar 18 Butt H-J, Makowski M, Kappl M, Ptak A. On the adhesion between individual particles. Kona 2011; 29: 2011. 10.14356/kona.2011009 Google Scholar 19 Indrieri M. Adhesive-free colloidal probes for nanoscale force measurements: production and characterization. Rev Sci Instrum 2011; 82: 023708. 10.1063/1.3553499 CASPubMedWeb of Science®Google Scholar 20 Hilal N, Kochkodan V, Al-Khatib L, Busca G. Characterization of molecularly imprinted composite membranes using an atomic force microscope. Surface Interface Anal 2002; 33: 672–675. 10.1002/sia.1434 CASWeb of Science®Google Scholar 21 Lorenz B, Keller R, Sunnick E, Geil B, Janshoff A. Colloidal probe microscopy of membrane–membrane interactions: from ligand–receptor recognition to fusion events. Biophys Chem 2010; 150: 54–63. 10.1016/j.bpc.2010.02.008 CASPubMedWeb of Science®Google Scholar 22 Dimitrov I, Trzebicka B, Müller AHE, Dworak A, Tsvetanov CB. Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities. Prog Polym Sci 2007; 32: 1275–1343. 10.1016/j.progpolymsci.2007.07.001 CASWeb of Science®Google Scholar 23 Kumashiro Y, Fukumori K, Takahashi H, Nakayama M, Akiyama Y, Yamato M, Okano T. Modulation of cell adhesion and detachment on thermo-responsive polymeric surfaces through the observation of surface dynamics. Colloids Surfaces B: Biointerfaces 2013; 106: 198–207. 10.1016/j.colsurfb.2013.01.029 CASPubMedWeb of Science®Google Scholar 24 Kessel S, Schmidt S, Müller R, Wischerhoff E, Laschewsky A, Lutz J-Fo, Uhlig K, Lankenau A, Duschl C, Fery A. Thermoresponsive PEG-based polymer layers: surface characterization with AFM force measurements. Langmuir 2009; 26: 3462–3467. 10.1021/la903007v CASWeb of Science®Google Scholar 25 Elliott LCC, Jing B, Akgun B, Zhu Y, Bohn PW, Fullerton-Shirey SK. Loading and distribution of a model small molecule drug in poly(N-isopropylacrylamide) brushes: a neutron reflectometry and AFM study. Langmuir 2013; 29: 3259–3268. 10.1021/la305088k CASPubMedWeb of Science®Google Scholar 26 Ishida N, Kobayashi M. Interaction forces measured between poly(N-isopropylacrylamide) grafted surface and hydrophobic particle. J Colloid Interface Sci 2006; 297: 513–519. 10.1016/j.jcis.2005.10.068 CASPubMedWeb of Science®Google Scholar 27 Hutter JL, Bechhoefer J. Calibration of atomic-force microscope tips. Rev Sci Instrum 1993; 64: 1868–1873. 10.1063/1.1143970 CASWeb of Science®Google Scholar 28 Kim H, Arakawa H, Osada T, Ikai A. Quantification of cell adhesion interactions by AFM: effects of LPS/PMA on the adhesion of C6 glioma cell to collagen type I. Appl Surf Sci 2002; 188: 493–498. 10.1016/S0169-4332(01)00978-3 CASWeb of Science®Google Scholar 29 Hou X, Liu B, Deng X, Zhang B, Yan J. Monodisperse polystyrene microspheres by dispersion copolymerization of styrene and other vinyl comonomers: characterization and protein adsorption properties. J Biomed Mater Res A 2007; 83A: 280–289. 10.1002/jbm.a.31229 CASWeb of Science®Google Scholar 30 Butt H-J, Kappl M, Mueller H, Raiteri R, Meyer W, Rühe J. Steric forces measured with the atomic force microscope at various temperatures. Langmuir 1999; 15: 2559–2565. 10.1021/la981503+ CASWeb of Science®Google Scholar 31 Zoppe JO, Österberg M, Venditti RA, Laine J, Rojas OJ. Surface interaction forces of cellulose nanocrystals grafted with thermoresponsive polymer brushes. Biomacromolecules 2011; 12: 2788–2796. 10.1021/bm200551p CASPubMedWeb of Science®Google Scholar 32 Drechsler A, Synytska A, Uhlmann P, Stamm M, Kremer F. Tuning the Adhesion of Silica Microparticles to a Poly(2-vinyl pyridine) Brush: An AFM Force Measurement Study. Langmuir 2012; 28: 15555–15565. 10.1021/la303131d CASPubMedWeb of Science®Google Scholar Citing Literature Volume103, Issue1January 2015Pages 145-153 ReferencesRelatedInformation
Referência(s)