Artigo Revisado por pares

Optimization of Plasma Polymerized Ethylenediamine Film Chemistry on Quartz Particles

2013; Wiley; Volume: 10; Issue: 7 Linguagem: Inglês

10.1002/ppap.201200143

ISSN

1612-8869

Autores

Karyn L. Jarvis, Peter Majewski,

Tópico(s)

Catalysis and Oxidation Reactions

Resumo

Plasma Processes and PolymersVolume 10, Issue 7 p. 619-626 Full Paper Optimization of Plasma Polymerized Ethylenediamine Film Chemistry on Quartz Particles Karyn L. Jarvis, Karyn L. Jarvis Mawson Institute, University of South Australia, Mawson Lakes, SA 5095, AustraliaSearch for more papers by this authorPeter Majewski, Corresponding Author Peter Majewski Mawson Institute, University of South Australia, Mawson Lakes, SA 5095, Australia School of Advanced Manufacturing and Mechanical Engineering, University of South Australia, Mawson Lakes, SA 5095, Australia University of South Australia, School of Advanced Manufacturing and Mechanical Engineering, City: Mawson Lakes, South Australia, Australia Fax: +61 8 8302 3380; E-mail: [email protected]Search for more papers by this author Karyn L. Jarvis, Karyn L. Jarvis Mawson Institute, University of South Australia, Mawson Lakes, SA 5095, AustraliaSearch for more papers by this authorPeter Majewski, Corresponding Author Peter Majewski Mawson Institute, University of South Australia, Mawson Lakes, SA 5095, Australia School of Advanced Manufacturing and Mechanical Engineering, University of South Australia, Mawson Lakes, SA 5095, Australia University of South Australia, School of Advanced Manufacturing and Mechanical Engineering, City: Mawson Lakes, South Australia, Australia Fax: +61 8 8302 3380; E-mail: [email protected]Search for more papers by this author First published: 19 April 2013 https://doi.org/10.1002/ppap.201200143Citations: 12Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Ethylenediamine plasma polymerization has been investigated to modify the surface of quartz particles to optimize the nitrogen concentration of coatings produced via a rotating barrel plasma reactor. Plasma polymerized ethylenediamine (ppED) films were deposited at varying powers, flow rates, and polymerization times. X-ray photoelectron spectroscopy indicated that plasma power appeared to have little effect on ppED chemistry while increasing the ethylenediamine flow rate and polymerization time increased the nitrogen concentration due to reduced fragmentation and increased film thickness respectively. Time of flight secondary-ion mass spectrometry demonstrated uniform distribution of nitrogen species across the particle surface. Ethylenediamine plasma polymerization using a rotating plasma reactor has shown to be a successful method for producing nitrogen rich particle coatings. References 1 J. W. Kim, H. S. Choi, J. Appl. Polym. Sci. 2002, 83, 2921. 10.1002/app.10295 CASWeb of Science®Google Scholar 2 P. Favia, N. De Vietro, R. Di Mundo, F. Fracassi, R. d'Agostino, Plasma Process. Polym. 2006, 3, 66. 10.1002/ppap.200500073 CASWeb of Science®Google Scholar 3 C. M. Chan, T. M. Ko, H. Hiraoka, Surf. Sci. Rep. 1996, 24, 1. 10.1016/0167-5729(96)80003-3 CASWeb of Science®Google Scholar 4 S. Gaur, G. Vergason, "Plasma Polymerization: Theory and Practice", in 43rd Annual Society of Vacuum Coaters Technical Conference, Society of Vacuum Coaters, Denver, CO, USA 2000, p. 267. Google Scholar 5 A. Choukourov, H. Biederman, I. Kholodkov, D. Slavinska, M. Trchova, A. Hollander, J. Appl. Polym. Sci. 2004, 92, 979. 10.1002/app.13387 CASWeb of Science®Google Scholar 6 S. N. Jampala, M. Sarmadi, S. Manolache, F. S. Denes, J. Appl. Polym. Sci. 2008, 107, 1686. 10.1002/app.27189 CASWeb of Science®Google Scholar 7 B. Finke, F. Hempel, H. Testrich, A. Artemenko, H. Rebl, O. Kylián, J. Meichsner, H. Biederman, B. Nebe, K. D. Weltmann, K. Schröder, Surf. Coat. Technol. 2011, 205, S520. 10.1016/j.surfcoat.2010.12.044 CASWeb of Science®Google Scholar 8 H. A. Gulec, A. Topacli, C. Topacli, N. Albayrak, M. Mutlu, J. Membrane Sci. 2010, 350, 310. 10.1016/j.memsci.2010.01.006 CASWeb of Science®Google Scholar 9 T. G. Lee, J. Kim, H. K. Shon, D. Jung, D. W. Moon, Appl. Surf. Sci. 2006, 252, 6632. 10.1016/j.apsusc.2006.02.214 CASWeb of Science®Google Scholar 10 J. Kim, H. K. Shon, D. Jung, D. W. Moon, S. Y. Han, T. G. Lee, Anal. Chem. 2005, 77, 4137. 10.1021/ac0500683 CASPubMedWeb of Science®Google Scholar 11 J. Kim, D. Jung, Y. Park, Y. Kim, D. W. Moon, T. G. Lee, Appl. Surf. Sci. 2007, 253, 4112. 10.1016/j.apsusc.2006.09.011 CASWeb of Science®Google Scholar 12 Y. Murata, T. Aradachi, J. Electrost. 2001, 51–52, 97. 10.1016/S0304-3886(01)00033-X CASWeb of Science®Google Scholar 13 M. Karches, C. Bayer, P. Rudolf von Rohr, Surf. Coat. Technol. 1999, 116–119, 879. 10.1016/S0257-8972(99)00194-2 CASWeb of Science®Google Scholar 14 M. Karches, P. R. von Rohr, Surf. Coat. Technol. 2001, 142–144, 28. 10.1016/S0257-8972(01)01145-8 CASWeb of Science®Google Scholar 15 N. De Vietro, P. Favia, F. Fracassi, R. d'Agostino, Plasma Process. Polym. 2010, 7, 582. 10.1002/ppap.200900149 CASWeb of Science®Google Scholar 16 G. Øye, V. Roucoules, A. M. Cameron, L. J. Oates, N. R. Cameron, P. G. Steel, J. P. S. Badyal, B. G. Davis, D. Coe, R. Cox, Langmuir 2002, 18, 8996. 10.1021/la0202935 CASWeb of Science®Google Scholar 17 G. Øye, V. Roucoules, L. J. Oates, A. M. Cameron, N. R. Cameron, P. G. Steel, J. P. S. Badyal, B. G. Davis, D. M. Coe, R. A. Cox, J. Phys. Chem. B 2003, 107, 3496. 10.1021/jp021262l CASWeb of Science®Google Scholar 18 K. L. Jarvis, P. Majewski, J. Colloid Interface Sci. 2012, 380, 150. 10.1016/j.jcis.2012.05.002 CASPubMedWeb of Science®Google Scholar 19 D. Briggs, Surface Analysis of Polymers by XPS and Static SIMS, Cambridge University Press, Cambridge, UK 1998. 10.1017/CBO9780511525261 Google Scholar 20 A. Abbas, C. Vivien, B. Bocquet, D. Guillochon, P. Supiot, Plasma Process. Polym. 2009, 6, 593. 10.1002/ppap.200900016 CASWeb of Science®Google Scholar 21 F. Basarir, N. Cuong, W.-K. Song, T.-H. Yoon, Macromol. Symp. 2007, 249–250, 61. 10.1002/masy.200750310 CASWeb of Science®Google Scholar 22 S. Myung, H. Choi, Korean J. Chem. Eng. 2006, 23, 505. 10.1007/BF02706757 CASWeb of Science®Google Scholar 23 N. Moreau, O. Feron, B. Gallez, B. Masereel, C. Michiels, T. V. Borght, F. Rossi, S. Lucas, Surf. Coat. Technol. 2011, 205, S462. 10.1016/j.surfcoat.2011.01.054 CASWeb of Science®Google Scholar 24 J. C. Vickerman, ToF-SIMS: Surface Analysis by Mass Spectrometry, IM Publications and SurfaceSpectra Limited, Huddersfield 2001. Google Scholar Citing Literature Volume10, Issue7July 2013Pages 619-626 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX