
Niche conservatism and species richness patterns of squamate reptiles in eastern and southern Africa
2010; Wiley; Volume: 36; Issue: 5 Linguagem: Inglês
10.1111/j.1442-9993.2010.02186.x
ISSN1442-9993
AutoresIgnacio Morales‐Castilla, Miguel Á. Olalla‐Tárraga, Luís Maurício Bini, Paulo de Marco Júnior, Bradford A. Hawkins, Miguel Á. Rodrı́guez,
Tópico(s)Amphibian and Reptile Biology
ResumoAustral EcologyVolume 36, Issue 5 p. 550-558 Niche conservatism and species richness patterns of squamate reptiles in eastern and southern Africa IGNACIO MORALES-CASTILLA, IGNACIO MORALES-CASTILLA Department of Ecology, University of Alcalá, 28871 Alcalá de Henares, Madrid, Spain (Email: [email protected])Search for more papers by this authorMIGUEL Á. OLALLA-TÁRRAGA, MIGUEL Á. OLALLA-TÁRRAGA Division of Biology, Imperial College London, Silwood Park Campus, Ascot, UKSearch for more papers by this authorLUIS MAURICIO BINI, LUIS MAURICIO BINI Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiania, GO, BrasilSearch for more papers by this authorPAULO DE MARCO JR, PAULO DE MARCO JR Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiania, GO, BrasilSearch for more papers by this authorBRADFORD A. HAWKINS, BRADFORD A. HAWKINS Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USASearch for more papers by this authorMIGUEL Á. RODRÍGUEZ, MIGUEL Á. RODRÍGUEZ Department of Ecology, University of Alcalá, 28871 Alcalá de Henares, Madrid, Spain (Email: [email protected])Search for more papers by this author IGNACIO MORALES-CASTILLA, IGNACIO MORALES-CASTILLA Department of Ecology, University of Alcalá, 28871 Alcalá de Henares, Madrid, Spain (Email: [email protected])Search for more papers by this authorMIGUEL Á. OLALLA-TÁRRAGA, MIGUEL Á. OLALLA-TÁRRAGA Division of Biology, Imperial College London, Silwood Park Campus, Ascot, UKSearch for more papers by this authorLUIS MAURICIO BINI, LUIS MAURICIO BINI Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiania, GO, BrasilSearch for more papers by this authorPAULO DE MARCO JR, PAULO DE MARCO JR Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiania, GO, BrasilSearch for more papers by this authorBRADFORD A. HAWKINS, BRADFORD A. HAWKINS Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USASearch for more papers by this authorMIGUEL Á. RODRÍGUEZ, MIGUEL Á. RODRÍGUEZ Department of Ecology, University of Alcalá, 28871 Alcalá de Henares, Madrid, Spain (Email: [email protected])Search for more papers by this author First published: 29 October 2010 https://doi.org/10.1111/j.1442-9993.2010.02186.xCitations: 11Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Abstract Niche conservatism has been proposed as a mechanism influencing large-scale patterns of taxonomic richness. We document the species richness patterns of five monophyletic squamate reptile groups (gekkonids, cordylids-scincids, lacertids, chameleons and alethinophidian snakes) in eastern and southern Africa, and explore if observed patterns reflect niche conservatism processes. We quantified richness and its relationships with current climatic conditions by gridding species' range maps at 110 × 110 km. Also, dated phylogenies and palaeoclimatic reconstructions, coupled with evidence from the fossil record, were used to approximate the areas and climate characteristics in which each group originated and/or radiated. Mean species richness and geographically corrected confidence intervals in current climate types were calculated for each group in order to establish their climatic preferences. On average, the species richness of older groups (gekkonids, cordylids-scincids and lacertids) was lower in equatorial climates and higher in arid and temperate conditions, whereas more recent groups (chameleons and alethinophidian snakes) were richer in equatorial and temperate climates and less rich in arid conditions. Across all groups, higher richness was associated with climatic characteristics similar to those prevailing at the time in which each group originated/radiated. The congruence of the current climates where reptile groups are richer and the past climates amidst which those groups originated is consistent with an explanation for their diversity gradients based on niche conservatism. REFERENCES Alexander G. J. & Marais J. (2007) A Guide to the Reptiles of Southern Africa, 1st edn. Struik Publishers, Cape Town. Araújo M. B., Nogués-Bravo D., Diniz-Filho J. A. F. et al. (2008) Quaternary climate changes explain diversity among reptiles and amphibians. Ecography 31, 8– 15. Branch W. R. (1998) Field Guide to Snakes and Other Reptiles of Southern Africa, 3rd edn. Struik Publishers Ltd, Cape Town. Broschinski A. (1999) Ein Lacertilier (Scincomorpha, Paramacellodidae) aus dem Oberen Jura von Tendagaru (Tansania). Mitt. Mus. Nat. Berl. 2, 155– 8. Cerling T. E., Harris J. M., MacFadden B. J. et al. (1997) Global vegetation change through the Miocene/Pliocene boundary. Nature 389, 153– 8. Clarke A. & Crame J. A. (2003) The importance of historical processes in global patterns of diversity. In: Macroecology: Concepts and Consequences (eds T. M. Blackburn & K. J. Gaston) pp. 130– 51. Blackwell, Oxford. Costa G. C., Nogueira C., Machado R. B. & Colli G. R. (2007) Squamate richness in the Brazilian Cerrado and its environmental-climatic associations. Divers. Distrib. 13, 714– 24. Currie D. J. (1991) Energy and large-scale patterns of animal-species and plant-species richness. Am. Nat. 137, 27– 49. Currie D. J., Mittelbach G. C., Cornell H. V. et al. (2004) Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol. Lett. 7, 1121– 34. Diniz-Filho J. A. F., Bini L. M. & Hawkins B. A. (2003) Spatial autocorrelation and red herrings in geographical ecology. Global. Ecol. Biogeogr. 12, 53– 64. Durand J. F. (2005) Major African contributions to Palaeozoic and Mesozoic vertebrate palaeontology. J. Afr. Earth Sci. 43, 53– 82. Estes R. (1983) The Fossil Record and the Early Distribution of Lizards. Harvard University Press, Cambridge. Evans S. E. (2003) At the feet of the dinosaurs: the early history and radiation of lizards. Biol. Rev. 78, 513– 51. Evans S. E., Prasad G. V. R. & Manhas B. K. (2002) Fossil lizards from the Jurassic Kota Formation of India. J. Vertebr. Palaeontol. 22, 299– 312. Griffith D. A. (2003) Spatial Autocorrelation and Spatial Filtering: Gaining Understanding through Theory and Scientific Visualization. Springer-Verlag, Berlin. Hawkins B. A. (2008) Perspectives in biogeography: recent progress toward understanding the global diversity gradient. IBS Newsl. 6, 5– 7. Hawkins B. A., Field R., Cornell H. V. et al. (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology 84, 3105– 17. Hawkins B. A., Diniz-Filho J. A. F., Jaramillo C. A. et al. (2006) Post-Eocene climate change, niche conservatism, and the latitudinal diversity gradient of New World birds. J. Biogeogr. 33, 770– 80. Hawkins B. A., Diniz J. A. F., Jaramillo C. A. et al. (2007) Climate, niche conservatism, and the global bird diversity gradient. Am. Nat. 170, S16– S27. Hawkins B. A., Rueda M. & Rodríguez M. Á. (2008) What do range maps and surveys tell us about diversity patterns? Folia Geobot. 43, 345– 55. Hillenius D. (1959) The differentiation within the genus Chamaleo laurenti, (1768). Beaufortia 8, 1– 92. Hillenius D. (1986) The Relationship of Brookesia, Rhampholeon and Chamaeleo (Chamaeleonidae, Reptilia). Bijdr. Dierkd. 56, 29– 38. Hortal J. (2008) Uncertainty and the measurement of terrestrial biodiversity gradients. J. Biogeogr. 35, 1335– 6. Hortal J., Rodríguez J., Nieto-Díaz M. et al. (2008) Regional and environmental effects on the species richness of mammal assemblages. J. Biogeogr. 35, 1202– 14. Kerr J. T., Kharouba H. M. & Currie D. J. (2007) The macroecological contribution to global change solutions. Science 316, 1581– 4. Kitching J. W. & Raath M. A. (1984) Fossils from the Elliot and Clarens Formations (Karoo Sequence) of the northeastern Cape, Orange Free State and Lesotho, and a suggested biozonation based on tetrapods. Palaeontol. Afr. 25, 111– 25. Köppen W. (1936) Das Geographische System Der Klimate. Handbuch Der Klimatologie, Vol. I. Gebr Borntraeger, Berlin. Kottek M., Grieser J., Beck C. et al. (2006) World Map of the Koppen-Geiger climate classification updated. Meteorol. Z. 15, 259– 63. Krause D. W., Evans S. E. & Gao K.-Q. (2003) First definitive record of Mesozoic lizards from Madagascar. J. Vertebr. Paleontol. 23, 842– 56. Kumazawa Y. (2007) Mitochondrial genomes from major lizard families suggest their phylogenetic relationships and ancient radiations. Gene 388, 19– 26. Legendre P. (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74, 1659– 73. Mariaux J. & Tilbury R. C. (2006) The pygmy chameleons of the Eastern Arc range (Tanzania): evolutionary relationships and the description of three new species of Rhampholeon (Sauria: Chamaeleonidae). Herpetol. J. 16, 315– 31. Mariaux J., Lutzmann N. & Stipala J. (2008) The two-horned chamaeleons of East Africa. Zool. J. Linn. Soc-Lond. 152, 367– 91. Mittelbach G. G., Schemske D. W., Cornell H. V. et al. (2007) Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol. Lett. 10, 315– 31. Nessov A., Zhegallo V. I. & Averianov A. O. (1998) A new locality of Late Cretaceous snakes, mammals and other vertebrates in Africa (western Libya). Ann. Paleontol. 84, 265– 74. Nogués-Bravo D., Rodríguez J., Hortal J. et al. (2008) Climate change, humans, and the extinction of the woolly mammoth. PLoS Biol. 6, e79. Olalla-Tárraga M. Á., Rodríguez M. Á. & Hawkins B. A. (2006) Broad-scale patterns of body size in squamate reptiles of Europe and North America. J. Biogeogr. 33, 781– 93. Peterson A. T., Soberon J. & Sánchez-Cordero V. (1999) Conservatism of ecological niches in evolutionary time. Science 285, 1265– 7. Pianka E. R. (1971) Lizard species density in the Kalahari Desert. Ecology 52, 1024– 9. Pianka E. R. & Schall J. J. (1981) Species Densities of Terrestrial Vertebrates in Australia. Ecological Biogeography in Australia. Dr. W. Junk Publishers, The Hague. Pickford B. & Andrews P. (1981) The Tinderet Miocene sequence in Kenya. J. Hum. Evol. 10, 11– 33. Pickford B., Senut D., Hadoto J. et al. (1986) Nouvelles decouvertes dans le Miocene inferiur de Napak, Ouganda Oriental. CR Acad. Sci., II 302, 47– 52. Pickford M., Senut B., Mein P. et al. (1996) Preliminary results of new excavations at Arrisdrift, middle Miocene of southern Namibia. CR Acad. Sci., II 322, 991– 6. Rage J. C. (2003) Squamate reptiles from the early Miocene of Arrisdrift (Namibia). In: Geology and Palaeobiology of the Central and Southern Namibia Vol. 2: Palaeontology of the Orange River Valley, Namibia (eds B. Senut & M. Pickford) pp. 43– 50. The Ministry of Mines and Energy, Windhoeck. Rage J. C. & Cappetta H. (2002) Vertebrates from the Cenomanian, and the geological age of the Draa Ubari fauna (Libya). Ann. Paleontol. 88, 79– 84. Rage J. C. & Escuillié F. (2003) The Cenomanian: stage of hindlimbed snakes. Carnets de Géologie, 2003/01. Rage J. C. & Werner C. (1999) Mid-Cretaceous (Cenomanian) snakes from Wadi Abu Hashim, Sudan: the earliest snake assemblage. Palaeontol. Afr. 35, 85– 110. Rangel T. F. L. V. B., Diniz-Filho J. A. F. & Bini L. M. (2006) Towards an integrated computational tool for spatial analysis in macroecology and biogeography. Global Ecol. Biogeogr. 15, 321– 7. Raxworthy C. J., Forstner M. R. J. & Nussbaum R. A. (2002) Chameleon radiation by oceanic dispersal. Nature 415, 784– 7. Rees P. M., Ziegler A. M. & Valdes P. J. (2000) Jurassic Phytogeography and Climates: New Data and Model Comparisons. Cambridge University Press, Cambridge. Ricklefs R. E. & Schluter D. (1993) Species Diversity: Regional and Historical Influences. Species Diversity in Ecological Communities: Historical and Geographical Perspectives. University of Chicago Press, Chicago. Ricklefs R. E., Losos J. B. & Townsend T. M. (2007) Evolutionary diversification of clades of squamate reptiles. J. Evol. Biol. 20, 1751– 62. Rieppel O., Walker A. & Odhiambo I. (1992) A preliminary report on a fossil Chamaeleonine (Reptilia: Chamaeleoninae) skull from the Miocene of Kenya. J. Herpetol. 26, 77– 80. Rodríguez M. Á., Belmontes J. A. & Hawkins B. A. (2005) Energy, water and large-scale patterns of reptile and amphibian species richness in Europe. Acta Oecol. 28, 65– 70. Rubidge B. S. (2005) Re-uniting lost continents. Fossil reptiles from the ancient Karoo and their wanderlust. S. Afr. J. Geol. 108, 135– 72. Sampson S. D., Witmer L. M., Forster C. A. et al. (1998) Predatory dinosaur remains from Madagascar: implications for the Cretaceous biogeography of Gondwana. Science 280, 1048– 51. Sanders K. L. & Lee M. S. Y. (2008) Molecular evidence for a rapid late-Miocene radiation of Australasian venomous snakes. Mol. Phylogenet. Evol. 46, 1165– 73. Schall J. J. & Pianka E. R. (1978) Geographical trends in numbers of species. Science 201, 679– 86. Scotese C. R. (2002) The Paleomap project. [Cited August 2009.] Available from URL: http://www.scotese.com Scotese C. R., Boucot A. J. & McKerrow W. S. (1999) Gondwanan palaeogeography and palaeoclimatology. J. Afr. Earth Sci. 28, 99– 114. Spawls S., Howell K., Drewes R. et al. (1997) A Field Guide to the Reptiles of East Africa. A & C Black Publishers Ltd, San Diego. Stephens P. R. & Wiens J. J. (2003) Explaining species richness from continents to communities: the time-for-speciation effect in emydid turtles. Am. Nat. 161, 122– 8. Terent'ev P. W. (1963) Attempt at application of analysis of variation to the qualitative richness of the fauna of terrestrial vertebrates of the U.S.S.R. Vest. Lenin. U. 21, 19– 26. Terribile L. C., Olalla-Tarraga M. A., Morales-Castilla I. et al. (2009) Global Richness Patterns of Venomous snakes reveal contrasting influences of ecology and history in two different clades. Oecologia 159, 617– 26. Tolley K. & Burger M. (2007) Chameleons of Southern Africa. Struik Publishers, Cape Town. Tolley K. A., Chase B. M. & Forest F. (2008) Speciation and radiations track climate transitions since the Miocene Climatic Optimum: a case study of southern African chameleons. J. Biogeogr. 35, 1402– 14. Uetz P. (2009) The reptile database. [Cited August 2009.] Available from URL: http://www.reptile-database.org Upchurch G. R., Otto-Bliesner B. L. & Scotese C. (1998) Vegetation-atmosphere interactions and their role in global warming during the latest cretaceous. Proc. R. Soc. Lond. B Biol. 353, 97– 111. Vermeij G. J. (1987) Evolution and Escalation. An Ecological History of Life. Princeton University Press, Princeton. Vidal N. & Hedges S. B. (2009) The molecular evolutionary tree of lizards, snakes, and amphisbaenians. CR Biol. 332, 129– 39. Vidal N., Rage J. C., Couloux A. et al. (2009) Snakes (Serpentes). In: The Timetree of Life (eds S. B. Hedges & S. Kumar) pp. 390– 7. Oxford University Press, Oxford. Whittaker R. J., Nogues-Bravo D. & Araújo M. B. (2007) Geographical gradients of species richness: a test of the water-energy conjecture of Hawkins et al. (2003) using European data for five taxa. Global Ecol. Biogeogr. 16, 76– 89. Wiens J. J. & Donoghue M. J. (2004) Historical biogeography, ecology and species richness. Trends Ecol. Evol. 19, 639– 44. Wiens J. J. & Graham C. H. (2005) Niche conservatism: integrating evolution, ecology, and conservation biology. Ann. Rev. Ecol. Syst. 36, 519– 39. Wiens J. J., Graham C. H., Moen D. S. et al. (2006) Evolutionary and ecological causes of the latitudinal diversity gradient in hylid frogs: tree frog trees unearth the roots of high tropical diversity. Am. Nat. 168, 579– 96. Wiens J. J., Parra-Olea G., García-París M. et al. (2007) Phylogenetic history underlies elevational biodiversity patterns in tropical salamanders. Proc. R. Soc. Lond. B Biol. 274, 919– 28. Zachos J., Pagani M., Sloan L. et al. (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686– 93. Ziegler A. M., Eshel G., Rees P. M. et al. (2003) Tracing the Tropics across land and sea: permian to present. Lethaia 36, 227– 54. Zils W., Werner C., Moritz A. et al. (1995) Tendagaru, the most famous dinosaur locality of Africa. Review, survey and future prospects. Doc. Nat. 97, 1– 41. Citing Literature Supporting Information Appendix S1. Current distribution of Köppen–Geiger climates within the study area. Appendix S2. Moran's I spatial correlograms for the species richness variation of five reptile groups. Appendix S3. Richness maps at the 110 × 110 km. grid showing the 456 cells used for analysis of gekkonids (a), lacertids (b), cordylids-scincids (c), chameleons (d) and snakes (e). Panel (f) shows the 110 km analysis overlaying the map of Kottek et al.'s (2006) climatic regions. Appendix S4. More detailed representation of Figure 2. Filename Description AEC_2186_sm_App1.pdf1.7 MB Supporting info item AEC_2186_sm_App2.doc163 KB Supporting info item AEC_2186_sm_App3.doc330 KB Supporting info item AEC_2186_sm_App4.doc96.5 KB Supporting info item Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. Volume36, Issue5August 2011Pages 550-558 ReferencesRelatedInformation
Referência(s)