Cerebral Energy Consumption and Provision: The Predominance of Neuronal Oxidative Metabolic Processes

1978; Wiley; Linguagem: Inglês

10.1002/9780470720370.ch8

ISSN

1935-4657

Autores

Frans F. Jöbsis, Myron Rosenthal,

Tópico(s)

Mitochondrial Function and Pathology

Resumo

Chapter 8 Cerebral Energy Consumption and Provision: The Predominance of Neuronal Oxidative Metabolic Processes Frans F. Jobsis, Frans F. Jobsis Department of Physiology, Duke University, Durham, North CarolinaSearch for more papers by this authorMyron Rosenthal, Myron Rosenthal Departments of Neurology and Physiology, University of Miami, Miami, FloridaSearch for more papers by this author Frans F. Jobsis, Frans F. Jobsis Department of Physiology, Duke University, Durham, North CarolinaSearch for more papers by this authorMyron Rosenthal, Myron Rosenthal Departments of Neurology and Physiology, University of Miami, Miami, FloridaSearch for more papers by this author Book Editor(s):Katherine Elliott, Katherine Elliott OrganizerSearch for more papers by this authorMaeve O'Connor, Maeve O'ConnorSearch for more papers by this author First published: 01 January 1978 https://doi.org/10.1002/9780470720370.ch8Citations: 2Book Series:Novartis Foundation Symposia AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary This chapter contains section titled: Energy Consumption Energy Conservation Concentrations and/or Flux Acknowledgements References Discussion References References Bachelard, H. S. (1975) Energy utilized by neurotransmitters, in Brain Work ( D. H. Ingvar & N. A. Lassen, eds.) (Alfred Brnzon Symp. 8), pp. 79–81, Munksgaard, Copenhagen Google Scholar Caldwell, P. C., Hodgkin, A. L., Keynes, R. D. & Shaw, T. I. (1960) The effect of injecting 'energy rich' phosphate compounds on the active transport of ions in the giant axons of Loligo. J. Physiol. (Lond.) 152, 561–590 10.1113/jphysiol.1960.sp006509 CASPubMedWeb of Science®Google Scholar Chance, B. & Williams, G. R. (1956) The respiratory chain and oxidative phosphorylation. Adv. Enzymol. Relat. Areas Mol. Biol. 17, 65–134 10.1002/9780470122624.ch2 CASPubMedGoogle Scholar Chance, B., Cohen, P., Jöbsis, F. F. & Schoener, B. (1962) Intracellular oxidation-reduction states in vivo . Science (Wash. D.C.) 137, 499–508 10.1126/science.137.3529.499 CASPubMedWeb of Science®Google Scholar Cohen, P. J. (1973) Effect of anesthetics on mitochondrial function. Anesthesiology 39, 153–164 10.1097/00000542-197308000-00007 CASPubMedWeb of Science®Google Scholar Creutzfeldt, O. D. (1975) Neurophysiological correlates of different functional states of the brain, in Brain Work ( D. H. Ingvar & N. A. Lassen, eds.) (Alfred Benzon Symp. 8), pp. 21–46, Munksgaard, Copenhagen Google Scholar Ferrendelli, J. A. & Chang, M. M. (1973) Brain metabolism during hypoglycemia. Arch. Neurol. 28, 173–177 10.1001/archneur.1973.00490210053006 CASPubMedWeb of Science®Google Scholar Hertz, L. & Schousboe, A. (1975) Ion and energy metabolism of the brain at the cellular level. Int. Rev. Neurobiol. 18, 141–211 10.1016/S0074-7742(08)60035-5 CASPubMedGoogle Scholar Himwich, W. A. & Himwich, H. E. (1946) Pyruvic acid exchange of the brain. J. Neuro-physiol. 9, 133–136 CASWeb of Science®Google Scholar Jöbsis, F. F. (1964) Basic processes in cellular respiration, in Handb. Physiol. Sect. 3: Respiration, vol. 1 ( W. O. Fenn & H. Rahn, eds.), pp. 63–124, American Physiological Society, Washington, D.C. Google Scholar Jöbsis, F. F., O'Connor, M. J., Vitale, A. & Vremay, H. (1971) Intracellular redox changes in functioning cerebral cortex. 1. Metabolic effects of epileptiform activity. J. Neurophysiol. 34, 735–749 10.1152/jn.1971.34.5.735 CASPubMedWeb of Science®Google Scholar Jöasrs, F. F., O'Connor, M. J., Rosenthal, M. & Van Buren, J. M. (1972) Fluorometric monitoring of metabolic activity in the intact cerebral cortex, in Neurophysiology Studied in Man ( G. Somjen, ed.), pp. 18–27, ICS 253, Excerpta Medica, Amsterdam Google Scholar Jöbsis, F. F., Rosenthal, M., LaManna, J. C., Lothman, E., Cordingley, G. & Somjen, G. (1975) Metabolic activity in epileptic seizures, in Brain Work ( D. H. Ingvar & N. A. Lassen, eds.) (Alfred Benzon Symp. 8), pp. 185–196, Munksgaard, Copenhagen Google Scholar Keilin, D. (1925) On cytochrome, a respiratory pigment, common to animals, yeast and higher plants. Proc. R. Soc. Lond. B Biol. Sci. 98, 312–339 10.1098/rspb.1925.0039 Web of Science®Google Scholar LaManna, J. C. & Rosenthal, M. (1975) Effect of ouabain and phenobarbital on oxidative metabolic activity associated with spreading cortical depression in cats. Brain Res. 88, 145–149 10.1016/0006-8993(75)90963-4 CASPubMedWeb of Science®Google Scholar LaManna, J. C., Sylvia, A. L., Martel, D. & Rosenthal, M. (1976) Fluorometric monitoring of the effects of adrenergic agents on oxidative metabolism in intact cerebral cortex. Neuropharmacolgey 15, 17–24 10.1016/0028-3908(76)90092-7 CASPubMedWeb of Science®Google Scholar LaManna, J. C., Cordingley, G. & Rosenthal, M. (1977a) Phenobarbital actions in vivo: effects on extracellular potassium activity and oxidative metabolism in cat cerebral cortex. J. Pharmacol. Exp. Ther. 200, 560–569 CASPubMedWeb of Science®Google Scholar LaManna, J. C., Younts, R. W. & Rosenthal, M. (1977b) The cerebral oxidative metabolic response to acute ethanol administration in rats and cats. Neuropharmacology 6, 283–288 10.1016/0028-3908(77)90108-3 Web of Science®Google Scholar Lewis, D. V. & Schuette, W. H. (1975) NADH fluorescence and [K+] changes during hippocampal stimulatim. J. Neurophysiol. 38, 405–417 10.1152/jn.1975.38.2.405 CASPubMedWeb of Science®Google Scholar Lewis, L. D., Ljunggpen, B., Rathcheson, R. A. & Siesjö, B. K. (1974) Cerebral energy state in insulin-induced hypoglycemia, related to blood glucose and to EEG. J. Neurochem. 23, 673–679 10.1111/j.1471-4159.1974.tb04390.x CASPubMedWeb of Science®Google Scholar Lothman, E., LaManna, J. C., Cordingley, G., Rosenthal, M. & Somjen, G. (1975) Responses of electrical potential, potassium levels and oxidative metabolic activity of the cerebral neocortex of cats. Brain Res. 88, 15–36 10.1016/0006-8993(75)90943-9 CASPubMedWeb of Science®Google Scholar Medzihradsky, F., Nandhasri, P. S., Idoyaga-Vargas, V. & Sellinger, O. Z. (1971) A comparison of the ATPase activity of the glial cell fraction and the neuronal perikaryal fraction isolated in bulk from rat cerebral cortex. J. Neurochem. 18, 1599–1603 10.1111/j.1471-4159.1971.tb00023.x CASPubMedWeb of Science®Google Scholar Mitchell, P. (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol. Rev. (Camb.) 41, 445–502 10.1111/j.1469-185X.1966.tb01501.x CASPubMedWeb of Science®Google Scholar Morris, M. E. (1974) Hypoxia and extracellular potassium activity in the guinea-pig cortex. Can. J. Physiol. Pharmacol. 52, 872–882 10.1139/y74-111 CASPubMedWeb of Science®Google Scholar Nair, V., Palm, D. & Roth, L. J. (1960) Relative vascularity of certain anatomical areas of the brain and other organs of the rat. Nature (Lond.) 155, 497–498 10.1038/188497a0 Web of Science®Google Scholar Nilsson, L. & Siesjö, B. K. (1970) The effect of anesthetics upon labile phosphates and upon extra- and intracellular lactate, pyruvate and bicarbonate concentrations in the rat brain. Acta Physiol. Scand. 80, 235–248 10.1111/j.1748-1716.1970.tb04787.x CASWeb of Science®Google Scholar O'Connor, M. J. (1977) Origin of labile NADH tissue fluorescence, in Oxygen and Physiological Function ( F. F. Jöbsis, ed.), pp. 90–99, Professional Information Library, Dallas Google Scholar Passonneau, J. V. (1969) Energy metabolites in experimental seizures, in Basic Mechanisms of the Epilepsies ( H. H. Jasper et al., eds.), pp. 98–103, Little, Brown, Boston Google Scholar Rang, H. P. & Ritchie, J. M. (1968) On the electronic sodium pump in mammalian non-myelinated nerve fibres and its activation by various external cations. J. Physiol. (Lond.) 196, 183–221 10.1113/jphysiol.1968.sp008502 CASPubMedWeb of Science®Google Scholar Ritchie, J. M. (1967) The oxygen consumption of mammalian non-myelinated nerve fibres at rest and during activity. J. Physiol. (Lond.) 188, 309–329 10.1113/jphysiol.1967.sp008141 CASPubMedWeb of Science®Google Scholar Rosenthal, M. & Jobsis, F. F. (1971) Intracellular redox changes in functioning cerebral cortex. II. Effects of direct cortical stimulation. J. Neurophysiol. 34, 750–761 10.1152/jn.1971.34.5.750 CASPubMedWeb of Science®Google Scholar Rosenthal, M. & LaManna, J. C. (1975) Effect of ouabain and phenobarbital on the kinetics of cortical metabolic transients associated with evoked potentials. J. Neurochem. 24, 111–116 10.1111/j.1471-4159.1975.tb07635.x CASPubMedWeb of Science®Google Scholar Rosenthal, M. & Somjen, G. (1973) Spreading depression, sustained potential shifts and metabolic activity of cerebral cortex of cats. J. Neurophysiol. 36, 739–749 10.1152/jn.1973.36.4.739 CASPubMedWeb of Science®Google Scholar Rosenthal, M., Martel, D. L. & LaManna, J. C. (1976) Effects of incomplete and complete ischemia on mitochondrial functioning measured in intact cerebral cortex of cats. Exp. Neurol. 52, 433–446 10.1016/0014-4886(76)90215-6 CASWeb of Science®Google Scholar Schmidt, C. F. (1964) The measurement of PO2 in tissues, in Oxygen in the Animal Organism, vol. 31 ( F. Dickens & E. Neil, eds.), pp. 239–246, Pergamon Press, London Google Scholar Siesjö, B. K. & Plum, F. (1973) Pathophysiology of anoxic brain damage, in Biology of Brain Dysfunction, vol. 1 ( G. E. Gaull, ed.), pp. 319–372, Plenum Press, New York 10.1007/978-1-4684-2667-0_9 Google Scholar Slater, E. C. (1953) Mechanism of phosphorylation in the respiratory chain. Nature (Lond.) 172, 975–978 10.1038/172975a0 CASPubMedWeb of Science®Google Scholar Sylvia, A. L., LaManna, J. C., Rosenthal, M. & Jöbsis, F. F. (1977) Metabolite studies of methamphetamine effects based upon mitochondrial respiratory state in rat brain. J. Pharmacol. Exp. Ther. 201, 117–125 CASPubMedWeb of Science®Google Scholar Whittam, R. (1961) Active cation transport as a pace-maker of respiration. Nature (Lond.) 191, 603–604 10.1038/191603a0 CASPubMedWeb of Science®Google Scholar Wilson, D. F., Erecinska, M. & Dutton, P. L. (1974) Thermodynamic relationships in mitochondrial oxidative phosphorylation, in Annual Review of Biophysics and Bioengineering, vol. 3 ( L. J. Mullins et al., eds.), pp. 203–230, Annual Reviews, Inc., Palo Alto, California Web of Science®Google Scholar Woodhall, B., Kramer, R. S., Currie, W. D. & Sanders, A. P. (1971) Brain energetics and neurosurgery, J. Neurosurg. 34, 3–13 10.3171/jns.1971.34.1.0003 CASPubMedWeb of Science®Google Scholar Yamada, S., LaManna, J., Younts, B., Rosenthal, M. & Somjen, G. (1977) Responses of oxidative metabolism and extracellular potassium to afferent stimulation of the cat spinal cord. Fed. Proc. 36, 516 Web of Science®Google Scholar References Google Scholar Bachelard, H. S. (1975) Energy utilized by neurotransmitters, in Brain Work ( D. H. Ingvar & N. A. Lassen, eds.) (Alfred Benzon Symposium 8), pp. 79–81, Munksgaard, Copenhagen. Google Scholar Hakim, A. M. & Moss, G. (1972) Direct in vivo quantitation of the pentose phosphate pathway in brain. Trans. N. Y. Acad. Sci. Series II 34, 473–484 10.1111/j.2164-0947.1972.tb02701.x PubMedWeb of Science®Google Scholar Hakim, A. M., Moss, G. & Gollomp, S. M. (1976) The effect of hypoxia on the pentose phosphate pathway in brain, J. Neurochem. 26, 683–688 10.1111/j.1471-4159.1976.tb04436.x-i1 CASPubMedWeb of Science®Google Scholar Kerkut, G. A. & York, B. (1971) The Electrogenic Sodium Pump, Scientechnica, Bristol. Google Scholar Maker, H. S., Clarke, D. D. & Lajtha, A. L. (1976) Intermediary metabolism of carbohydrates and amino acids, in Basic Neurochemistry ( G. J. Siegel et al., eds.), 2nd edn., pp. 279–307, Little, Brown, Boston Google Scholar Weiss, P. A. (1969) Neuronal dynamics and neuroplasmic ('axonal') flow, in Cellular Dynamics of the Neuron ( S. H. Barondes, eds.), pp. 3–34, Academic Press, New York 10.1016/B978-0-12-611908-4.50006-X Web of Science®Google Scholar Weiss, W. P. & Sokoloff, L. (1963) Reversal of thyroxine-induced hypermetabolism by puromycin. Science (Wash. D.C.) 140, 1324–1326 10.1126/science.140.3573.1324 CASPubMedWeb of Science®Google Scholar Citing Literature Ciba Foundation Symposium 56 ‐ Cerebral Vascular Smooth Muscle and Its Control ReferencesRelatedInformation

Referência(s)