Artigo Acesso aberto Revisado por pares

Space-time simulation of intermittent rainfall with prescribed advection field: Adaptation of the turning band method

2013; Wiley; Volume: 49; Issue: 6 Linguagem: Inglês

10.1002/wrcr.20190

ISSN

1944-7973

Autores

Étienne Leblois, Jean‐Dominique Creutin,

Tópico(s)

Hydrology and Drought Analysis

Resumo

[1] Space-time rainfall simulation is useful to study questions like, for instance, the propagation of rainfall-measurement uncertainty in hydrological modeling. This study adapts a classical Gaussian field simulation technique, the turning-band method, in order to produce sequences of rainfall fields satisfying three key features of actual precipitation systems: (i) the skewed point distribution and the space-time structure of nonzero rainfall (NZR); (ii) the average probability and the space-time structure of intermittency; and (iii) a prescribed advection field. The acronym of our simulator is SAMPO, for simulation of advected mesoscale precipitations and their occurrence. SAMPO assembles various theoretical developments available from the literature. The concept of backtrajectories introduces a priori any type of advection field in the heart of the turning band method (TBM). TBM outputs transformation into rainfall fields with a desired structure is controlled using Chebyshev-Hermite polynomial expansion. The intermittency taken as a binary process statistically independent of the NZR process allows the use of a common algorithm for both processes. The 3-D simulation with a space-time anisotropy captures important details of the precipitation kinematics summarized by the Taylor velocity of both NZR and intermittency. A case study based on high-resolution weather radar data serves as an example of model inference. Illustrative simulations revisit some classical questions about rainfall variography like the influence of advection or intermittency. They also show the combined role of Taylor's and advection velocities.

Referência(s)