Molecular Cloning of Proteoglycan Core Proteins
2007; Wiley; Linguagem: Inglês
10.1002/9780470513385.ch14
ISSN1935-4657
AutoresErkki Ruoslahti, Mario A. Bourdon, Tom Krusius,
Tópico(s)RNA Interference and Gene Delivery
ResumoMolecular Cloning of Proteoglycan Core Proteins Erkki Ruoslahti, Erkki Ruoslahti Cancer Research Center, La Jolla Cancer Research Foundation, 10901 North Torrey Pines Road, La Jolla, California 92037, USASearch for more papers by this authorMario Bourdon, Mario Bourdon Cancer Research Center, La Jolla Cancer Research Foundation, 10901 North Torrey Pines Road, La Jolla, California 92037, USASearch for more papers by this authorTom Krusius, Tom Krusius Cancer Research Center, La Jolla Cancer Research Foundation, 10901 North Torrey Pines Road, La Jolla, California 92037, USASearch for more papers by this author Erkki Ruoslahti, Erkki Ruoslahti Cancer Research Center, La Jolla Cancer Research Foundation, 10901 North Torrey Pines Road, La Jolla, California 92037, USASearch for more papers by this authorMario Bourdon, Mario Bourdon Cancer Research Center, La Jolla Cancer Research Foundation, 10901 North Torrey Pines Road, La Jolla, California 92037, USASearch for more papers by this authorTom Krusius, Tom Krusius Cancer Research Center, La Jolla Cancer Research Foundation, 10901 North Torrey Pines Road, La Jolla, California 92037, USASearch for more papers by this author Book Editor(s):David Evered, David Evered OrganizerSearch for more papers by this authorJulie Whelan, Julie WhelanSearch for more papers by this author First published: 28 September 2007 https://doi.org/10.1002/9780470513385.ch14Citations: 2Book Series:Novartis Foundation Symposia AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary Recombinant DNA methods have been used to analyse core proteins of two different proteoglycans, one from a rat yolk sac tumour and the other from human fibroblasts and fetal membrane tissue. The processed core protein of the yolk sac tumour proteoglycan is a 104-amino acid polypeptide. This polypeptide contains a 49-amino acid serine-glycine repeat which clearly serves as the chondroitin sulphate attachment region. Genomic and mRNA blots suggest that this core protein is a member of a multigene family the members of which share the Ser-Gly repeat. The fibrobladfetal membrane proteoglycan has a 329-amino acid core protein which is also processed from a larger precursor. This core protein contains three individual Ser-Gly dipeptides, one of which is known to be substituted with a chondroitiddermatan sulphate side-chain. The availability of proteoglycan cDNA clones will facilitate gene transfer studies aimed at identifying the recognition sequences for the addition of the glycosaminoglycan. Gene transfer should also allow studies on the effects of proteoglycan expression on cellular properties such as adhesion and tumorigenicity. References Bourdon MA, Oldberg Å, Pierschbacher M, Ruoslahti E 1985 Molecular cloning and sequence analysis of a chondroitin sulfate proteoglycan cDNA. Proc Natl Acad Sci USA 82: 1321–1325. 10.1073/pnas.82.5.1321 CASPubMedWeb of Science®Google Scholar Bourdon MA, Shiga M, Ruoslahti E 1986 Identification from cDNA of the precursor form of a chondroitin sulfate proteoglycan core protein. J Biol Chem, in press. Google Scholar Brennan MJ, Oldberg Å, Hayman EG, Ruoslahti E 1983 Effect of a proteoglycan produced by rat tumor cells on their adhesion to fibronectin-collagen substrata. Cancer Res 43: 4302–4307. CASPubMedWeb of Science®Google Scholar Brennan MJ, Oldberg Å, Pierschbacher, MD, Ruoslahti E 1984 Chondroitin/dermatan sulfate proteoglycan in human fetal membranes. J Biol Chem 259: 13742–13750. CASPubMedWeb of Science®Google Scholar Couchman JR, Woods A, Höök M, Christner JE 1985 Characterization of a dermatan sulfate proteoglycan synthesized by murine parietal yolk sac (PYS-2) cells. J Biol Chem 260: 13755–13762. CASPubMedWeb of Science®Google Scholar Coudron C, Koerner T, Jacobsson I, Rodén L, Schwartz NB 1980 Peptides with alternating serine and glycine residues as substrates for xylosyltransferase. Fed Proc 39: 1671 (abstr 346). Web of Science®Google Scholar Engvall E, Krusius T, Wewer U, Ruoslahti E 1983 Laminin from rat yolk sac tumor: isolation, partial characterization, and comparison with mouse laminin. Arch Biochem Biophys 222: 649–656. 10.1016/0003-9861(83)90562-3 CASPubMedWeb of Science®Google Scholar Fisher LW, Termine JD, Dejter SW Jr et al 1983 Proteoglycans of developing bone. J Biol Chem 258: 6588–6594. 10.1016/S0021-9258(18)32453-0 CASPubMedWeb of Science®Google Scholar Fritze LMS, Reilly CV, Rosenberg RD 1985 An antiproliferative heparan sulfate species produced by postconfluent smooth muscle cells. J Cell Biol 100: 1041–1049. 10.1083/jcb.100.4.1041 CASPubMedWeb of Science®Google Scholar Glössl J, Beck M, Kresse H 1984 Biosynthesis of proteodermatan sulfate in cultured human fibroblasts. J Biol Chem 259: 14144–14150. CASPubMedWeb of Science®Google Scholar Hascall VC, Hascall GT 1981 Proteoglycans. In: ED Hay (ed) Cell biology of extracellular matrix. Plenum Publishing, New York, p 39–63. 10.1007/978-1-4613-0881-2_3 Google Scholar Krusius T, Ruoslahti E 1986 Primary structure of an extracellular matrix proteoglycan core protein deduced from cloned cDNA. Proc Natl Acad Sci USA, in press. Google Scholar Oldberg Å, Ruoslahti E 1982 Interactions between chondroitin sulfate proteoglycan, fibronectin, and collagen. J Biol Chem 257: 4859–4863. CASPubMedWeb of Science®Google Scholar Oldberg Å, Hayman EG, Ruoslahti E 1981 Isolation of a chondroitin sulfate proteoglycan from a rat yolk sac tumor and immunochemical demonstration of its cell surface localization. J Biol Chem 256: 10847–10852. 10.1016/S0021-9258(19)68521-2 CASPubMedWeb of Science®Google Scholar Pearson CH, Winterbottom N, Fackre DS, Scott PG, Carpenter MR 1983 The NH2-terminal amino acid sequence of bovine skin proteodermatan sulfate. J Biol Chem 258: 15101–15104. 10.1016/S0021-9258(17)43777-X CASPubMedWeb of Science®Google Scholar Pierschbacher MD, Ruoslahti E 1984 Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature (Lond) 309: 30–33. 10.1038/309030a0 CASPubMedWeb of Science®Google Scholar Robinson HC, Horner AA, Höök M, Ogren S, Lindahl U 1978 A proteoglycan form of heparin and its degradation to single-chain molecules. J Biol Chem 253: 6687–6693. 10.1016/S0021-9258(17)37973-5 CASPubMedWeb of Science®Google Scholar Rosenberg LC, Choi HU, Tang L-H et al 1985 Isolation of dermatan sulfate proteoglycans from mature bovine articular cartilages. J Biol Chem 260: 6304–6313. CASPubMedWeb of Science®Google Scholar Rosenberg LC, Choi HU, Poole AR, Lewandrowska K, Culp LA 1986 Biological roles of dermatan sulphate proteoglycans. This volume, p 47–68. Google Scholar Ruoslahti E, Hayman EG, Pierschbacher MD 1985 Extracellular matrices and cell adhesion. Arteriosclerosis 5: 581–594. 10.1161/01.ATV.5.6.581 CASPubMedWeb of Science®Google Scholar Shin H-S, Bargiello TA, Clark BT, Jackson FR, Young MA 1985 An unusual coding sequence from a Drosophila clock gene is conserved in vertebrates. Nature (Lond) 317: 445–448. 10.1038/317445a0 CASPubMedWeb of Science®Google Scholar Stevens RL, Otsu K, Austen KF 1985 Purification and analysis of the core protein of the protease-resistant intracellular chondroitin sulfate E proteoglycan from the interleukin 3-dependent mouse mast cell. J Biol Chem 260: 14194–14200. 10.1016/S0021-9258(17)38702-1 CASPubMedWeb of Science®Google Scholar Vogel KG, Heinegård D 1985 Characterization of proteoglycans from adult bovine tendon. J Biol Chem 260: 9298–9306. CASPubMedWeb of Science®Google Scholar Vogel KG, Peterson DW 1981 Extracellular, surface, and intracellular proteoglycans produced by human embryo lung fibroblasts in culture (IMR-90). J Biol Chem 256: 13235–13242. CASPubMedWeb of Science®Google Scholar Wewer U 1982 Characterization of a rat yolk sac carcinoma cell line. Dev Biol 93: 416–421. 10.1016/0012-1606(82)90128-2 CASPubMedWeb of Science®Google Scholar Young RA, Davis RW 1983 Efficient isolation of genes by using antibody probes. Proc Natl Acad Sci USA 80: 1194–1198. 10.1073/pnas.80.5.1194 CASPubMedWeb of Science®Google Scholar Campbell P, Jacobsson I, Benzing-Purdie L, Rodén L, Fessler JH 1984 Silk—a new substrate for UDP-D-xylose:proteoglycan core protein β-D-xylosyltransferase. Anal Biochem 137: 505–516. 10.1016/0003-2697(84)90119-2 CASPubMedWeb of Science®Google Scholar Chopra RK, Pearson CH, Pringle GA, Fackre DS, Scott PG 1985 Dermatan sulphate is located on serine-4 of bovine skin proteodermatan sulphate. Biochem J 232: 277–279. 10.1042/bj2320277 CASPubMedWeb of Science®Google Scholar Kolata G 1985 Genes and biological clocks. Science (Wash DC) 230: 1151–1152. 10.1126/science.230.4730.1151 CASWeb of Science®Google Scholar Rodén L, Koerner T, Olson C, Schwartz NB 1985 Mechanisms of chain initiation in the biosynthesis of connective tissue polysaccharides. Fed Proc 44: 373–385. PubMedWeb of Science®Google Scholar Shin HS, Bargiello TA, Clark BT, Jackson FR, Young MW 1985 An unusual coding sequence from a Drosophila clock gene is conserved in vertebrates. Nature (Lond) 317: 445–448. 10.1038/317445a0 CASPubMedWeb of Science®Google Scholar Citing Literature Ciba Foundation Symposium 124 ‐ Functions of the Proteoglycans: Functions of the Proteoglycans: Ciba Foundation Symposium 124 ReferencesRelatedInformation
Referência(s)