
Costimulatory action of glycoinositolphospholipids from Trypanosoma cruzi: increased interleukin 2 secretion and induction of nuclear translocation of the nuclear factor of activated T cells 1
1999; Wiley; Volume: 13; Issue: 12 Linguagem: Inglês
10.1096/fasebj.13.12.1627
ISSN1530-6860
AutoresMaria Bellio, Ana Carolina Oliveira, Cláudia Mermelstein, Márcia Alves Marques Capella, João P. B. Viola, Jean‐Pierre Levraud, George A. DosReis, José O. Previato, Lúcia Mendonça‐Previato,
Tópico(s)Research on Leishmaniasis Studies
ResumoThe FASEB JournalVolume 13, Issue 12 p. 1627-1636 Research CommunicationsFree to Read Costimulatory action of glycoinositolphospholipids from Trypanosoma cruzi: increased interleukin 2 secretion and induction of nuclear translocation of the nuclear factor of activated T cells 1 Maria Bellio, Corresponding Author Maria Bellio [email protected] Instituto de Microbiologia Prof. Paulo de Goes, 21.941-590 Rio de Janeiro, RJ, Brazil Correspondence: Depto. de Imunologia/Instituto de Microbiologia Prof. Paulo de Goes, CCS Bl.I-2° andar Sala: I2-053, UFRJ -Cidade Universitaria, CEP: 21941-590 Ilha do Fundao, Rio de Janeiro, RJ. Brazil. E-mail: [email protected]Search for more papers by this authorAna-Carolina S. C. Oliveira, Ana-Carolina S. C. Oliveira Instituto de Microbiologia Prof. Paulo de Goes, 21.941-590 Rio de Janeiro, RJ, BrazilSearch for more papers by this authorClaudia S. Mermelstein, Claudia S. Mermelstein Departamento de Histologia e Embriologia, ICB, 21.941-590 Rio de Janeiro, RJ, BrazilSearch for more papers by this authorMarcia A. M. Capella, Marcia A. M. Capella Instituto de Biofísica Carlos Chagas F°, Universidade Federal do Rio de Janeiro, 21.941-590 Rio de Janeiro, RJ, BrazilSearch for more papers by this authorJoão P. B. Viola, João P. B. Viola Programa de Medicina Experimental, Instituto Nacional do Cancer, Rio de Janeiro, RJ, BrazilSearch for more papers by this authorJean-Pierre Levraud, Jean-Pierre Levraud Unité INSERM U 277, Institut Pasteur, 75724 Paris Cedex 15, FranceSearch for more papers by this authorGeorge A. Dosreis, George A. Dosreis Instituto de Biofísica Carlos Chagas F°, Universidade Federal do Rio de Janeiro, 21.941-590 Rio de Janeiro, RJ, BrazilSearch for more papers by this authorJosé O. Previato, José O. Previato Instituto de Microbiologia Prof. Paulo de Goes, 21.941-590 Rio de Janeiro, RJ, BrazilSearch for more papers by this authorLucia Mendonça-Previato, Lucia Mendonça-Previato Instituto de Microbiologia Prof. Paulo de Goes, 21.941-590 Rio de Janeiro, RJ, BrazilSearch for more papers by this author Maria Bellio, Corresponding Author Maria Bellio [email protected] Instituto de Microbiologia Prof. Paulo de Goes, 21.941-590 Rio de Janeiro, RJ, Brazil Correspondence: Depto. de Imunologia/Instituto de Microbiologia Prof. Paulo de Goes, CCS Bl.I-2° andar Sala: I2-053, UFRJ -Cidade Universitaria, CEP: 21941-590 Ilha do Fundao, Rio de Janeiro, RJ. Brazil. E-mail: [email protected]Search for more papers by this authorAna-Carolina S. C. Oliveira, Ana-Carolina S. C. Oliveira Instituto de Microbiologia Prof. Paulo de Goes, 21.941-590 Rio de Janeiro, RJ, BrazilSearch for more papers by this authorClaudia S. Mermelstein, Claudia S. Mermelstein Departamento de Histologia e Embriologia, ICB, 21.941-590 Rio de Janeiro, RJ, BrazilSearch for more papers by this authorMarcia A. M. Capella, Marcia A. M. Capella Instituto de Biofísica Carlos Chagas F°, Universidade Federal do Rio de Janeiro, 21.941-590 Rio de Janeiro, RJ, BrazilSearch for more papers by this authorJoão P. B. Viola, João P. B. Viola Programa de Medicina Experimental, Instituto Nacional do Cancer, Rio de Janeiro, RJ, BrazilSearch for more papers by this authorJean-Pierre Levraud, Jean-Pierre Levraud Unité INSERM U 277, Institut Pasteur, 75724 Paris Cedex 15, FranceSearch for more papers by this authorGeorge A. Dosreis, George A. Dosreis Instituto de Biofísica Carlos Chagas F°, Universidade Federal do Rio de Janeiro, 21.941-590 Rio de Janeiro, RJ, BrazilSearch for more papers by this authorJosé O. Previato, José O. Previato Instituto de Microbiologia Prof. Paulo de Goes, 21.941-590 Rio de Janeiro, RJ, BrazilSearch for more papers by this authorLucia Mendonça-Previato, Lucia Mendonça-Previato Instituto de Microbiologia Prof. Paulo de Goes, 21.941-590 Rio de Janeiro, RJ, BrazilSearch for more papers by this author First published: 01 September 1999 https://doi.org/10.1096/fasebj.13.12.1627Citations: 12Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat ABSTRACT The effects of the glycoinositolphospholipids (GIPLs) from Trypanosoma cruzi on T lymphocyte activation were investigated in a mouse T cell hybridoma (DO-11.10). Purified GIPLs from T. cruzi strains Y and G markedly increased IL-2 mRNA transcripts and IL-2 secretion induced by mitogenic anti-CD3 and anti-Thy1 mAbs. This costimulatory function was also revealed by the induction of IL-2 secretion after the simultaneous addition of the T. cruzi GIPLs and either the calcium ionophore A23187 or phorbol ester. The capacity of the GIPL molecule to induce an increase in cytoplasmic calcium levels was also demonstrated. After exposure of T cell hybridoma to GIPL, the nuclear transcription factor NFAT1 became partially dephosphory-lated, and its nuclear localization was demonstrated both in the T cell hybridoma and in Balb/c CD3+ cells. These results demonstrate that T. cruzi GIPL molecules are capable of signaling to T cells and therefore could be valuable tools for the study of T cell activation, besides playing a potential role in subverting the T lymphocyte immune response during T. cruzi infection.—Bellio, M., Oliveira, A.-C. S. C., Mermelstein, C. S., Capella, M. A. M., Viola, J. P. B., Levraud, J.-P., Dosreis, G. A., Pre-viato, J. O., Mendonça-Previato, L. Costimulatory action of glycoinositolphospholipids from Trypano-soma cruzi: increased interleukin 2 secretion and induction of nuclear translocation of the nuclear factor of activated T cells 1. FASEB J. 13, 1627–1636 (1999) REFERENCES 1McConville, M., and Ferguson, M. A. J. (1993) The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes. Biochem. J. 294, 305–324 10.1042/bj2940305 CASPubMedWeb of Science®Google Scholar 2Previato, J. O., Gorin, P. A. J., Mazurek, M., Xavier, M. T., Fournet, B., Wieruszesk, J. M., and Mendonca-Previato, L. (1990) Primary structure of the oligosaccharide chain of li-popeptidophosphoglycan of epimastigote forms of Trypanosoma cruzi. J. Biol. Chem. 265, 2518–2526 CASPubMedWeb of Science®Google Scholar 3de Lederkremer, R. M., Lima, C., Ramirez, M. I., Ferguson, M. A., Homans, S. W., and Thomas-Oates, J. (1991) Complete structure of the glycan of lipopeptidophosphoglycan from Trypanosoma cruzi epimastigotes. J. Biol. Chem. 266, 23670–23675 PubMedWeb of Science®Google Scholar 4Carreira, J. C., Jones, C., Wait, R., Previato, J. O., and Mendonça Previato, L. (1996) Structural variation in the glycoinositolphos-pholipids of different strains of Trypanosoma cruzi. Glycoconj. J. 13, 955–966 10.1007/BF01053191 CASPubMedWeb of Science®Google Scholar 5Schofield, L., and Hackett, F. (1993) Signal transduction in host cells by a glycosylphosphatidylinositol toxin of malaria parasites. J. Exp. Med. 177, 145–153 10.1084/jem.177.1.145 CASPubMedWeb of Science®Google Scholar 6Descoteaux, A., Turco, S. J., Sacks, D. L., and Matlashewski, G. (1991) Leishmania donovani lipophosphoglycan selectively inhibits signal transduction in macrophages. J. Immunol. 146, 2747–2753 CASPubMedWeb of Science®Google Scholar 7McNeely, T. B., and Turco, S. J. (1990) Requirement of li-pophosphoglycan for intracellular survival of Leishmania dono-vani within human monocytes. J. Immunol. 144, 2745–2750 CASPubMedWeb of Science®Google Scholar 8Proudfoot, L., Nikolaev, A. V., Feng, G., Wei, X., Ferguson, M. A. J., Brimacombe, J. S., and Liew, F. Y. (1996) Regulation of the expression of nitric oxide synthase and leishmanicidial activity by glycoconjugates of Leishmania lipophosphoglycan in murine macrophages. Proc. Natl. Acad. Sci. USA 93, 10984–10988 10.1073/pnas.93.20.10984 CASADSPubMedWeb of Science®Google Scholar 9Gomes, N. A., Previato, J. O., Zingales, B., Mendoncça-Previato, L., and DosReis, G. A. (1996) Down-regulation of T lymphocyte activation in vitro and in vivo induced by glycoinositolphospho-lipids from Trypanosoma cruzi. Assignment of the T cell-suppres-sive determinant to the ceramide domain. J. Immunol 156, 628–635 PubMedWeb of Science®Google Scholar 10Bento, C. A., Melo, M. B., Previato, J. O., Mendonca Previato, L., and Peçanha, L. M. (1996) Glycoinositolphospholipids purified from Trypanosoma cruzi stimulate Ig production in vitro. J. Immunol. 157, 4996–5001 CASPubMedWeb of Science®Google Scholar 11Camargo, M. M., Andrade, A. C., Almeida, I. C., Travassos, L. R., and Gazzinelli, R. T. (1997) Glycoconjugates isolated from Trypanosoma cruzi but not from Leishmania species membranes trigger nitric oxide synthesis as well as microbi-cidal activity in IFN-gamma-primed macrophages. J. Immunol. 159, 6131–6139 CASPubMedWeb of Science®Google Scholar 12Gazzinelli, R. T., Camargo, M. M., Almeida, I. C., Morita, Y. S., Giraldo, M., Acosta Serrano, A., Hieny, S., Englund, P. T., Ferguson, M. A., Travassos, L. R., and Sher, A. (1997) Identification and characterization of protozoan products that trigger the synthesis of IL-12 by inflammatory macrophages. Chem. Immunol 68, 136–152 10.1159/000058689 CASPubMedWeb of Science®Google Scholar 13Smith, S. W., and Lester, R. L. (1974) Inositol phosphorylcer-amide, a novel substance and the chief member of a major group of yeast sphingolipids containing a single inositol phosphate. J. Biol. Chem. 249, 3395–3405 CASPubMedWeb of Science®Google Scholar 14Yague, J., White, J., Coleclough, C., Kappler, J., Palmer, E., and Marrack, P. (1985) The T cell receptor: the alpha and beta chains define idiotype, and antigen and MHC specificity. Cell 42, 81–87 10.1016/S0092-8674(85)80103-3 CASPubMedWeb of Science®Google Scholar 15Kappler, J. W., and Marrack, P. (1986) Lymphokines. In Handbook of Experimental Immunology ( O. M. Weir, ed) Vol. 2, Alden Press, Oxford, U.K. Google Scholar 16Delassus, S., Coutinho, G. C., Saucier, C., Darche, S., and Kourilsky, P. (1994) Differential cytokine expression in maternal blood and placenta during murine gestation. J. Immunol. 152, 2411–2420 CASPubMedWeb of Science®Google Scholar 17Chelly, J., Montarras, D., Pinset, C., Berwald-Netter, Y., Kaplan, J. C., and Kahn, A. (1990) Quantitative estimation of minor mRNAs by cDNA-polymerase chain reaction. Application to dystrophin mRNA in cultured myogenic and brain cells. Eur. J. Biochem. 187, 691–698 10.1111/j.1432-1033.1990.tb15355.x CASPubMedWeb of Science®Google Scholar 18Azuara, V., Levraud, J.-P., Lembezat, M.-P., and Pereira, P. (1997) A novel subset of adult γδ thymocytes secreting a distinct pattern of cytokines and expressing a very restricted T cell receptor repertoire. Eur. J. Immunol. 27, 544–553 10.1002/eji.1830270228 CASPubMedWeb of Science®Google Scholar 19Pannetier, C., Cochet, M., Darche, S., Casrouge, A., Zöller, M., and Kourilsky, P. (1993) The sizes of the CDR3 hypervariable regions of the murine T-cell receptor β chains vary as a function of the recombined germ-line segments. Proc. Natl. Acad. Sci. USA 90, 4319–4323 10.1073/pnas.90.9.4319 CASADSPubMedWeb of Science®Google Scholar 20Ho, A. M., Jain, J., Rao, A., and Hogan, P. G. (1994) Expression of the transcription factor NFATp in a neuronal cell line and in the murine nervous system. J. Biol. Chem. 269, 28181–28186 10.1016/S0021-9258(18)46911-6 CASPubMedWeb of Science®Google Scholar 21Routier, F., Previato, J. O., Jones, C., Wait, R., and Mendonça-Previato, L. (1993) Glycoinositolphospholipids from members of the Trypanosomatidae family: investigation of the lipid moiety. Ci. Cult. J. Braz. Assoc. Adv. Sci. 45, 66–68 Google Scholar 22Gulbins, E., Coggeshall, K. M., Baier, G., Telford, D., Langlet, C., Baier Bitterlich, G., Bonnefoy Berard, N., Burn, P., Witting-hofer, A., and Altman, A. (1994) Direct stimulation of Vav guanine nucleotide exchange activity for Ras by phorbol esters and diglycerides. Mol. Cell. Biol. 14, 4749–4758 10.1128/MCB.14.7.4749 CASPubMedWeb of Science®Google Scholar 23Jarvis, W. D., Fornari, F. A., Jr., Browning, J. L., Gewirtz, D. A., Kolesnick, R. N., and Grant, S. (1994) Attenuation of ceramide-induced apoptosis by diglyceride in human myeloid leukemia cells. J. Biol. Chem. 269, 31685–31692 CASPubMedWeb of Science®Google Scholar 24Haimovitz Friedman, A., Kan, C. C., Ehleiter, D., Persaud, R. S., McLoughlin, M., Fuks, Z., and Kolesnick, R. N. (1994) Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J. Exp. Med. 180, 525–535 Google Scholar 25Dolmetsch, R. E., Xu, K., and Lewis, R. S. (1998) Calcium oscillations increase the efficiency and specificity of gene expression. Nature (London) 392, 933–936 10.1038/31960 CASADSPubMedWeb of Science®Google Scholar 26Li, W., Llopis, J., Whitney, M., Zlokarnik, G., and Tsien, R. Y. (1998) Cell-permeant caged InsP3 ester shows that Ca2+ spike frequency can optimize gene expression. Nature (London) 392, 936–941 10.1038/31965 CASADSPubMedWeb of Science®Google Scholar 27Shaw, K. T. Y., Ho, A. M., Raghavan, A., Kim, J., Jain, J., Park, J., Sharma, S., Rao, A., and Hogan, P. G. (1995) Immunosuppres-sive drugs prevent a rapid dephosphorylation of transcription factor NFAT1 in stimulated immune cells. Proc. Natl. Acad. Sci. USA 92, 11205–11209 10.1073/pnas.92.24.11205 CASADSPubMedWeb of Science®Google Scholar 28Loh, C., Shaw, K. T. Y., Carew, J., Viola, J. P. B., Luo, C., Perrino, B. A., and Rao A. (1996) Calcineurin binds the transcription factor NFAT1 and reverse its activity. J. Biol. Chem. 271, 1088410891. Google Scholar 29Umlauf, S. W., Beverly, B., Lantz, O., and Schwartz, R. H. (1995) Regulation of interleukin 2 gene expression by CD28 costimu-lation in mouse T-cell clones: both nuclear and cytoplasmic RNAs are regulated with complex kinetics. Mol. Cell. Biol. 15, 3197–3205 10.1128/MCB.15.6.3197 CASPubMedWeb of Science®Google Scholar 30Boucher, L. M., Wiegmann, K., Fütterer, A., Pfeffer, K., Machleidt, T., Schütze, S., Mak, T. W., and Krönke, M. (1995) CD28 signals through acidic sphingomyelinase. J. Exp. Med. 181, 2059–2068 10.1084/jem.181.6.2059 CASPubMedWeb of Science®Google Scholar 31Chan, G., and Ochi, A. (1995) Sphingomyelin-ceramide turnover in CD28 costimulatory signaling. Eur. J. Immunol. 25, 1999–2004 10.1002/eji.1830250730 CASPubMedWeb of Science®Google Scholar 32Ballou, L. R., Chao, C. P., Holness, M. A., Barker, S. C., and Raghow, R. (1992) Interleukin-1-mediated PGE2 production and sphingomyelin metabolism. Evidence for the regulation of cyclooxygenase gene expression by sphingosine and ceramide. J. Biol. Chem. 267, 20044–20050 10.1016/S0021-9258(19)88663-5 CASPubMedWeb of Science®Google Scholar 33Mathias, S., Younes, A., Kan, C. C., Orlow, I., Joseph, C., and Kolesnick, R. N. (1993) Activation of the sphingomyelin signaling pathway in intact EL4 cells and in a cell-free system by IL-1 beta. Science 259, 519–522 10.1126/science.8424175 CASADSPubMedWeb of Science®Google Scholar 34Beals, C. R., Clipstone, N. A., Ho, S. N., and Crabtree, G. R. (1997) Nuclear localization of NFATc by calcineurin-depen-dent, cyclosporin-sensitive intramolecular interaction. Genes & Dev. 11, 824–834. 10.1101/gad.11.7.824 CASPubMedWeb of Science®Google Scholar 35Jain, J., Loh, C., and Rao, A. (1995) Transcriptional regulation of the IL-2 gene. Curr. Opin. Immunol. 7, 333–342 10.1016/0952-7915(95)80107-3 CASPubMedWeb of Science®Google Scholar 36Su, B., Jacinto, E., Hibi, M., Kallunki, T., Karin, M., and Ben Neriah, Y. (1994) JNK is involved in signal integration during costimulation of T lymphocytes. Cell 77, 727–736 10.1016/0092-8674(94)90056-6 PubMedWeb of Science®Google Scholar 37Spiegel, S., and Merrill, A. H., Jr. (1996) Sphingolipid metabolism and cell growth regulation. FASEB J. 10, 1388–1397 10.1096/fasebj.10.12.8903509 CASPubMedWeb of Science®Google Scholar 38Dbaibo, G. S., Perry, D. K., Gamard, C. J., Platt, R., Poirier, G. G., Obeid, L. M., and Hannun, Y. A. (1997) Cytokine response modifier A (CrmA) inhibits ceramide formation in response to tumor necrosis factor (TNF)-alpha: CrmA and Bcl-2 target distinct components in the apoptotic pathway. J. Exp. Med. 185, 481–490 10.1084/jem.185.3.481 CASPubMedWeb of Science®Google Scholar 39Schutze, S., Potthoff, K., Machleidt, T., Berkovic, D., Wiegmann, K., and Krönke, M. (1992) TNF activates NF-κB by phosphati-dylcholine-specific phospholipase C-induced 'acidic' sphingo-myelin breakdown. Cell 71, 765–776 10.1016/0092-8674(92)90553-O PubMedWeb of Science®Google Scholar 40Machleidt, T., Wiegmann, K., Henkel, T., Schütze, S., Baeuerle, P., and Krönke, M. (1994) Sphingomyelinase activates proteolytic I kappa B-alpha degradation in a cell-free system. J. Biol. Chem. 269, 13760–13765 CASPubMedWeb of Science®Google Scholar 41Yang, Z., Costanzo, M., Golde, D. W., and Kolesnick, R. N. (1993) Tumor necrosis factor activation of the sphingomyelin pathway signals nuclear factor kappa B translocation in intact HL-60 cells. J. Biol. Chem. 268, 20520–20523 CASPubMedWeb of Science®Google Scholar 42Ghosh, P., Sica, A., Cippitelli, M., Subleski, J., Lahesmaa, R., Young, H. A., and Rice, N. R. (1996) Activation of nuclear factor of activated T cells in a cyclosporin A-resistant pathway. J. Biol. Chem. 271, 7700–7704 10.1074/jbc.271.13.7700 CASPubMedWeb of Science®Google Scholar 43Pushkareva, M., Obeid, L. M., and Hannun, Y. A. (1995) Ceramide: an endogenous regulator of apoptosis and growth suppression. Immunol. Today 16, 294–297 10.1016/0167-5699(95)80184-7 CASPubMedWeb of Science®Google Scholar 44Ballou, L. R., Laulederkind, S. J. F., Rosloniec, E. F., and Raghow, R. (1996) Ceramide signalling and the immune response. Biochim. Biophys. Acta 1301, 273–287 10.1016/0005-2760(96)00004-5 PubMedWeb of Science®Google Scholar 45Tokura, Y., Wakita, H., Yagi, H., Nishimura, K., Furukawa, F., and Takigawa, M. (1996) Th2 suppressor cells are more susceptible to sphingosine than Th1 cells in murine contact photosen-sitivity. J. Invest. Dermatol. 107, 34–40 10.1111/1523-1747.ep12297849 CASPubMedWeb of Science®Google Scholar 46Sakano, S., Takemura, H., Yamada, K., Imoto, K., Kaneko, M., and Ohshika, H. (1996) Ca2+ mobilizing action of sphingosine in Jurkat human leukemia T cells. Evidence that sphingosine releases Ca2+ from inositol trisphosphate- and phosphatidic acid-sensitive intracellular stores through a mechanism independent of inositol trisphosphate. J. Biol. Chem. 271, 11148–11155 10.1074/jbc.271.19.11148 CASPubMedWeb of Science®Google Scholar 47Hashizume, T., Kageura, T., and Sato, T. (1998) Different effects of cell-permeable ceramide analogs on platelet activation. Biochem. Mol. Biol. Int. 44, 489–496 CASPubMedWeb of Science®Google Scholar 48Burleigh, B. A., and Andrews, N. W. (1998) Signaling and host invasion by Trypanosoma cruzi. Curr. Opin. Microbiol. 1, 461–465 10.1016/S1369-5274(98)80066-0 CASWeb of Science®Google Scholar 49Michel, C., and van Echten Deckert, G. (1997) Conversion of dihydroceramide to ceramide occurs at the cytosolic face of the endoplasmic reticulum. FEBS Lett. 416, 153–155 10.1016/S0014-5793(97)01187-3 CASPubMedWeb of Science®Google Scholar 50Olivera, A., Zhang, H., Carlson, R. O., Mattie, M. E., Schmidt, R. R., and Spiegel, S. (1994) Stereospecificity of sphingosine-induced intracellular calcium mobilization and cellular proliferation. J. Biol. Chem. 269, 17924–17930 CASPubMedWeb of Science®Google Scholar 51Xavier, M. T., Previato, J. O., Andrade, A. F. B., and Mendonça-Previato, L. (1991) Evidence for the presence of β-D-galacto-furanosyl residues (1-3)-linked to α-D-mannopyranose on the cell membrane in all development stages of Trypanosoma cruzi. Ci. Cult. J. Braz. Assoc. Adv. Sci. 43, 49 Google Scholar 52Golgher, D. B., Colli, W., Souto-Padron, T., and Zingales, B. (1993) Galactofuranose-containing glycoconjugates of epimas-tigote and trypomastigote forms of Trypanosoma cruzi. Mol. Biochem. Parasitol. 60, 249–264 10.1016/0166-6851(93)90136-L CASPubMedWeb of Science®Google Scholar 53Gottlieb, M. (1977) A Carbohydrate-containing antigen from Trypanosoma cruzi and its detection in the circulation of infected mice. J. Immunol. 119, 465–470 CASPubMedWeb of Science®Google Scholar 54Gottlieb, M. (1978) Trypanosoma cruzi: identification of a cell surface polysaccharide. Exp. Parasitol. 45, 200–207 10.1016/0014-4894(78)90060-7 CASPubMedWeb of Science®Google Scholar 55Minoprio, P., Itohara, Y., Heusser, C., Tonegawa, S., and Coutinho, A. (1989) Immunobiology of murine T. cruzi infection: the predominance of parasite-nonspecific responses and the activation of TCRI T cells. Immunol. Rev. 112, 187–203 Google Scholar 56Lopes, M. F., da Veiga, V. F., Santos, A. R., Fonseca, M. E., and DosReis, G. A. (1995) Activation-induced CD4+ T cell death by apoptosis in experimental Chagas' disease. J. Immunol. 154, 744–752 CASPubMedWeb of Science®Google Scholar 57Freire-de Lima, C. G., Nunes, M. P., Corte-Real, S., Soares, M. P., Previato, J. O., Mendoncça-Previato, L., and DosReis, G. A. (1998) Proapoptotic activity of a Trypanosoma cruzi ceramide-containing glycolipid turned on in host macrophages by IFN-γ. J. Immunol. 161, 4909–4916 Google Scholar Citing Literature Volume13, Issue12September 1999Pages 1627-1636 ReferencesRelatedInformation
Referência(s)