QUANTIFYING GROWTH AND CALCIUM CARBONATE DEPOSITION OF CALLIARTHRON CHEILOSPORIOIDES (CORALLINALES, RHODOPHYTA) IN THE FIELD USING A PERSISTENT VITAL STAIN1
2009; Wiley; Volume: 46; Issue: 1 Linguagem: Inglês
10.1111/j.1529-8817.2009.00770.x
ISSN1529-8817
Autores Tópico(s)Ocean Acidification Effects and Responses
ResumoJournal of PhycologyVolume 46, Issue 1 p. 13-17 QUANTIFYING GROWTH AND CALCIUM CARBONATE DEPOSITION OF CALLIARTHRON CHEILOSPORIOIDES (CORALLINALES, RHODOPHYTA) IN THE FIELD USING A PERSISTENT VITAL STAIN1 Patrick T. Martone, Patrick T. Martone Hopkins Marine Station of Stanford University, Pacific Grove, California 93950, USA Present address: Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4. Author for correspondence: e-mail [email protected].Search for more papers by this author Patrick T. Martone, Patrick T. Martone Hopkins Marine Station of Stanford University, Pacific Grove, California 93950, USA Present address: Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4. Author for correspondence: e-mail [email protected].Search for more papers by this author First published: 20 January 2010 https://doi.org/10.1111/j.1529-8817.2009.00770.xCitations: 22 1 Received 12 March 2009. Accepted 29 August 2009. 2 Present address: Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4. 3 Author for correspondence: e-mail [email protected]. Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Growth and calcium carbonate deposition rates of the coralline alga Calliarthron cheilosporioides Manza were quantified by monitoring fronds in the intertidal zone that had been chemically labeled with the nontoxic fluorescent brightener Calcofluor white. This vital stain effectively labeled apical meristems of coralline thalli in the field: fronds exposed for only 5 min had detectable chemical marks at least 1.5 years later. By distinguishing portions of thalli that developed before and after exposure, this methodology permitted accurate measurement of growth and calcium carbonate deposition at each meristem. In Calliarthron, meristematic activity declined with increasing frond size. However, because growing fronds dichotomize, the total number of meristems and the deposition rate of new calcified tissue both increased with frond size. Growth rates reported here suggest that large fronds may not be as old as previously estimated. The Calcofluor white method may improve demographic studies of corallines by resolving growth and age of fronds in the field and may facilitate studies of climate change on calcium carbonate deposition in these ecologically important, calcifying algae. References Adey, W. H. 1970. The effects of light and temperature on growth rates in boreal-subarctic crustose corallines. J. Phycol. 6: 269–76. Adey, W. H. 1975. The algal ridges and coral reefs of St. Croix: their structure and Holocene development. Atoll Res. Bull. 187: 1–67. Adey, W. H. & MacIntyre, I. G. 1973. Crustose coralline algae: a reevaluation in the geological sciences. Geol. Soc. Am. Bull. 84: 883–904. Adey, W. H. & McKibbin, D. L. 1970. Studies on maerl species Phymatolithon calcareum (Pallas) nov. comb. and Lithothamnion coralloides (Crouan) in the Rio Vigo. Bot. Mar. 13: 100–6. Adey, W. H. & Vassar, J. M. 1975. Succession and accretion rates in Caribbean crustose corallines. Phycologia 14: 55–70. Agegian, C. R. 1981. Growth of the branched coralline alga, Porolithon gardneri (Foslie) in the Hawaiian archipelago. Proc. Fourth Int. Coral Reef Symp. Manila 2: 419–23. Agegian, C. R. 1985. A biochemical ecology of Porolithon gardneri (Foslie). PhD thesis, University of Hawaii, Honolulu, 178 pp. Akioka, H., Baba, M., Masaki, T. & Johansen, H. W. 1999. Rocky shore turfs dominated by Corallina (Corallinales, Rhodophyta) in Northern Japan. Phycol. Res. 47: 199–206. Andrake, W. & Johansen, H. W. 1980. Alizarin red dye as a marker for measuring growth in Corallina officinalis L. (Corallinaceae, Rhodophyta). J. Phycol. 16: 620–2. Blake, C. & Maggs, C. 2003. Comparative growth rates and internal banding periodicity of maerl species (Corallinales, Rhodophyta) from northern Europe. Phycologia 42: 606–12. Cole, K. M. 1964. Induced fluorescence in gametophytes of some Laminariales. Can. J. Bot. 42: 1173–81. Dommasnes, A. 1968. Variations in the meiofauna of Corallina officinalis L. with wave exposure. Sarsia 34: 117–24. Foster, M. S. 1975. Algal succession in an Macrocystis pyrifera forest. Mar. Biol. 32: 313–29. Frantz, B. R., Foster, M. S. & Riosmena-Rodríguez, R. 2005. Clathromorphum nereostratum (Corallinales, Rhodophyta): the oldest alga? J. Phycol. 41: 770–3. Gardiner, J. S. 1931. Coral Reefs and Atolls. Macmillan and Co., London, 181 pp. Gee, J. 1965. Chemical stimulation of settlement in larvae of Spirorbis rupestris (Serpulidae). Anim. Behav. 13: 181–6. Goreau, T. F. 1963. Calcium carbonate deposition by coralline algae and corals in relation to their roles as reef-builders. Ann. N. Y. Acad. Sci. 109: 127–67. Haas, P., Hill, G. & Karstens, W. K. H. 1935. The metabolism of calcareous algae. II. The seasonal variation in certain metabolic products of Corallina squamata Ellis. Ann. Bot. 49: 609–19. Halfar, J., Steneck, R. S., Joachimski, M., Kronz, A. & Wanamaker, A. D., Jr. 2008. Coralline red algae as high-resolution climate recorders. Geology 36: 463–6. Hall-Spencer, J. M., Rodolfo-Metalpa, R., Martin, S., Ransome, E., Fine, M., Turner, S. M., Rowley, S. J., Tedesco, D. & Buia, M.-C. 2008. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454: 96–9. Hsaio, S. I. C. & Druehl, L. D. 1973. Environmental control of gametogenesis in Laminaria saccharina. IV. In situ development of gametophytes and young sporophytes. J. Phycol. 9: 160–4. Johansen, H. W. 1981. Coralline Algae, A First Synthesis. CRC Press, Boca Raton, Florida, 239 pp. Johansen, H. W. & Austin, L. F. 1970. Growth rates in the articulated coralline Calliarthron (Rhodophyta). Can. J. Bot. 48: 125–32. Kamenos, N. A., Cusack, M. & Moore, P. G. 2008. Coralline algae are global palaeothermometers with bi-weekly resolution. Geochem. Cosmochim. Acta 72: 771–9. Kelaher, B. P. 2002. Influence of physical characteristics of coralline turf on associated macrofaunal assemblages. Mar. Ecol. Prog. Ser. 232: 141–8. Kendrick, G. A. 1991. Recruitment of coralline crusts and filamentous turf algae in the Galapagos archipelago: effect of simulated scour, erosion and accretion. J. Exp. Mar. Biol. Ecol. 147: 47–63. Kitamura, M., Koyama, T., Nakano, Y. & Uemura, D. 2007. Characterization of a natural inducer of coral larval metamorphosis. J. Exp. Mar. Biol. Ecol. 340: 96–102. Klinger, T. & DeWreede, R. E. 1988. Stipe rings, age, and size in populations of Laminaria setchellii Silva (Laminariales, Phaeophyta) in British Columbia, Canada. Phycologia 27: 234–40. Koehl, M. A. R., Silk, W. K., Liang, H. & Mahadevan, L. 2008. How kelp produce blade shapes suited to different flow regimes: a new wrinkle. Integr. Comp. Biol. 48: 834–51. Kuffner, I. B., Andersson, A. J., Jokiel, P. L., Rodgers, K. U. S. & Mackenzie, F. T. 2008. Decreased abundance of crustose coralline algae due to ocean acidification. Nat. Geosci. 1: 114–7. Littler, M. M. 1972. The crustose Corallinaceae. Oceanogr. Mar. Biol. Annu. Rev. 10: 311–47. Martone, P. T. & Denny, M. W. 2008. To break a coralline: mechanical constraints on the size and survival of a wave-swept seaweed. J. Exp. Biol. 211: 3433–41. Matsuda, S. 1989. Succession and growth rates of encrusting crustose coralline algae (Rhodophyta, Cryptonemiales) in the upper fore-reef environment off Ishigaki Island, Ryukyu Islands. Coral Reefs 7: 185–95. Nakazawa, S., Takamura, K. & Abe, M. 1969. Rhizoid differentiation in Fucus eggs labeled with calcofluor white and birefringence of cell wall. Bot. Mag. Tokyo 82: 41–4. Paine, R. T. 1984. Ecological determinism in the competition for space. Ecology 65: 1339–48. Pearse, V. B. 1972. Radioisotopic study of calcification in the articulated coralline alga Bossiella orbigniana. J. Phycol. 8: 88–97. Quinn, J. F. 1982. Competitive hierarchies in marine benthic communities. Oecologia 54: 129–35. Rivera, M. G., Riosmena-Rodriguez, R. & Foster, M. S. 2004. Age and growth of Lithothamnion muelleri (Corallinales, Rhodophyta) in the southwestern Gulf of California, Mexico. Cienc. Mar. 30: 235–49. Rumrill, S. & Cameron, R. 1983. Effects of gamma-aminobutryic acid on the settlement of larvae of the black chiton Katharina tunicata. Mar. Biol. 72: 243–7. Sebens, K. P. 1983. Settlement and metamorphosis of a temperate soft-coral larva (Alcyonium siderium Verrill): induction by crustose algae. Biol. Bull. 165: 286–304. Smith, S. V. 1972. Production of calcium carbonate on the mainland shelf of southern California. Limnol. Oceanogr. 17: 28–41. Stearn, C. W., Scoffin, T. P. & Martindale, W. 1977. Calcium carbonate budget of a fringing reef on the west coast of Barbados. Bull. Mar. Sci. 27: 479–510. Steller, D. L., Hernandez-Ayon, J. M., Riosmena-Rodriguez, R. & Cabello-Pasini, A. 2007. Effect of temperature on photosynthesis, growth, and calcification rates of the free-living coralline alga Lithophyllum margaritae. Cienc. Mar. 33: 441–56. Steller, D. L., Riosmena-Rodriguez, R., Foster, M. S. & Roberts, C. A. 2003. Rhodolith bed diversity in the Gulf of California: the importance of rhodolith structure and consequences of disturbance. Aquat. Conserv. Mar. Freshw. Ecosyst. 13: S5–20. Steneck, R. S. 1985. Adaptations of crustose coralline algae to herbivory: patterns in space and time. In D. Toomey & M. Nitecki [Eds.] Paleoalgology. Springer-Verlag, Berlin, pp. 352–66. Steneck, R. S. 1986. The ecology of coralline algal crusts: convergent patterns and adaptive strategies. Annu. Rev. Ecol. Syst. 17: 273–303. Steneck, R. S. & Adey, W. H. 1976. The role of environment in control of morphology in Lithophyllum congestum, a Caribbean algal ridge builder. Bot. Mar. 19: 197–215. Steneck, R. S. & Paine, R. T. 1986. Ecological and taxonomic studies of shallow-water encrusting Corallinaceae of the boreal northeastern Pacific. Phycologia 25: 221–40. Waaland, S. D. & Waaland, J. R. 1975. Analysis of cell elongation in red algae by fluorescent labelling. Planta 126: 127–38. Williams, E. A., Craigie, A., Yeates, A. & Degnan, S. M. 2008. Articulated coralline algae of the genus Amphiroa are highly effective natural inducers of settlement in the tropical abalone Haliotis asinina. Biol. Bull. 215: 98–107. Citing Literature Volume46, Issue1February 2010Pages 13-17 ReferencesRelatedInformation
Referência(s)