A coupled Maxwell integrodifferential model for magnetization processes
2013; Wiley; Volume: 287; Issue: 4 Linguagem: Italiano
10.1002/mana.201200206
ISSN1522-2616
AutoresSerge Nicaise, Fredi Tröltzsch,
Tópico(s)Advanced Numerical Methods in Computational Mathematics
ResumoMathematische NachrichtenVolume 287, Issue 4 p. 432-452 Original Paper A coupled Maxwell integrodifferential model for magnetization processes Serge Nicaise, Corresponding Author Serge Nicaise Laboratoire de Mathématiques et ses Applications de Valenciennes, FR CNRS 2956, Institut des Sciences et Techniques de Valenciennes, Université de Valenciennes et du Hainaut-Cambrésis, Le Mont Houy, 59313 Valenciennes Cedex 9, FranceCorresponding author: e-mail: [email protected], Phone: +33 327 511 927, Fax: +33 327 511 901Search for more papers by this authorF. Tröltzsch, F. Tröltzsch [email protected] +49 30 3147 9688 | Fax: +49 30 3147 8658 Technische Universität Berlin, Institut für Mathematik, Sekr. MA 4-5, Str. des 17. Uni 136, 10623 Berlin, GermanySearch for more papers by this author Serge Nicaise, Corresponding Author Serge Nicaise Laboratoire de Mathématiques et ses Applications de Valenciennes, FR CNRS 2956, Institut des Sciences et Techniques de Valenciennes, Université de Valenciennes et du Hainaut-Cambrésis, Le Mont Houy, 59313 Valenciennes Cedex 9, FranceCorresponding author: e-mail: [email protected], Phone: +33 327 511 927, Fax: +33 327 511 901Search for more papers by this authorF. Tröltzsch, F. Tröltzsch [email protected] +49 30 3147 9688 | Fax: +49 30 3147 8658 Technische Universität Berlin, Institut für Mathematik, Sekr. MA 4-5, Str. des 17. Uni 136, 10623 Berlin, GermanySearch for more papers by this author First published: 22 August 2013 https://doi.org/10.1002/mana.201200206Citations: 13Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract A mathematical model for instationary magnetization processes is considered, where the underlying spatial domain includes electrically conducting and nonconducting regions. The model accounts for the magnetic induction law that couples the given electrical voltage with the induced electrical current in the induction coil. By a theorem of Showalter on degenerate parabolic equations, theorems on existence, uniqueness, and regularity of the solution to the associated Maxwell integrodifferential system are proved. References 1A. Alonso Rodríguez and A. Valli, Eddy Current Approximation of Maxwell Equations, MS&A, Modeling, Simulation and Applications Vol. 4 (Theory, algorithms and applications, Springer-Verlag Italia, Milan, 2010). 10.1007/978-88-470-1506-7 Google Scholar 2H. Ammari, A. Buffa, and J.-C. Nédélec, A justification of eddy currents model for the Maxwell equations, SIAM J. Appl. Math. 60(5), 1805–1823 (2000). 10.1137/S0036139998348979 Web of Science®Google Scholar 3C. Amrouche, C. Bernardi, M. Dauge, and V. Girault, Vector potentials in three-dimensional non-smooth domains, Math. Methods Appl. Sci. 21(9), 823–864 (1998). 10.1002/(SICI)1099-1476(199806)21:9 3.0.CO;2-B Web of Science®Google Scholar 4L. Arnold and B. Harrach, A unified variational formulation for the parabolic-elliptic eddy current equations, SIAM J. Appl. Math. 72(2), 558–576 (2012). 10.1137/110831477 Web of Science®Google Scholar 5F. Bachinger, U. Langer, and J. Schöberl, Numerical analysis of nonlinear multiharmonic eddy current problems, Numer. Math. 100(4), 593–616 (2005). 10.1007/s00211-005-0597-2 Web of Science®Google Scholar 6A. Bossavit, Computational electromagnetism, Electromagnetism, Variational formulations, complementarity, edge elements (Academic Press Inc., San Diego, CA, 1998). Google Scholar 7A. Buffa, M. Costabel, and D. Sheen, On traces for in Lipschitz domains, J. Math. Anal. Appl. 276(2), 845–867 (2002). 10.1016/S0022-247X(02)00455-9 Web of Science®Google Scholar 8M. Costabel, M. Dauge, and S. Nicaise, Singularities of eddy current problems, M2AN Math. Model. Numer. Anal. 37(5), 807–831 (2003). 10.1051/m2an:2003056 Web of Science®Google Scholar 9V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms Vol. 5 (Springer Series in Computational Mathematics, Springer, Berlin, 1986). 10.1007/978-3-642-61623-5 Google Scholar 10D. Hömberg and J. Sokołowski, Optimal shape design of inductor coils for surface hardening, Numer. Funct. Anal. Optim. 42, 1087–1117 (2003). Web of Science®Google Scholar 11M. Kaltenbacher, Numerical Simulation of Mechatronic Sensors and Actuators, Second ed. (Springer-Verlag, 2007). Google Scholar 12M. Kolmbaurm, Existence and uniqueness of eddy current problems in bounded and unbounded domains, Technical report, J. Kepler University Linz, May 2011, DK-Report 2011-06. Google Scholar 13P. Monk, Finite element methods for Maxwell's equations, Numerical Mathematics and Scientific Computation (Oxford University, Press, New York, 2003). 10.1093/acprof:oso/9780198508885.001.0001 Google Scholar 14R. E. Showalter, Hilbert Space Methods for Partial Differential Equations, Monographs and Studies in Mathematics Vol. 1 (Pitman, London, 1977). Google Scholar 15L. Tartar, On the characterization of traces of a Sobolev space used for Maxwell's equation, in: A.-Y. Le Roux, editor, Proceedings of a Meeting Held in Bordeaux, in Honour of Michel Artola (1997). Google Scholar 16C. Weber, A local compactness theorem for Maxwell's equations, Math. Methods Appl. Sci. 2, 12–25 (1980). 10.1002/mma.1670020103 Google Scholar Citing Literature Volume287, Issue4March 2014Pages 432-452 ReferencesRelatedInformation
Referência(s)