Focussed ion beam nanotomography reveals the 3D morphology of different solid phases in hardened cement pastes
2010; Wiley; Volume: 241; Issue: 3 Linguagem: Inglês
10.1111/j.1365-2818.2010.03433.x
ISSN1365-2818
AutoresPavel Trtik, Beat Münch, P. Gasser, Andreas Leemann, Roman Loser, Roger Wepf, Pietro Lura,
Tópico(s)Advanced X-ray Imaging Techniques
ResumoJournal of MicroscopyVolume 241, Issue 3 p. 234-242 Focussed ion beam nanotomography reveals the 3D morphology of different solid phases in hardened cement pastes P. TRTIK, P. TRTIK Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, SwitzerlandSearch for more papers by this authorB. MÜNCH, B. MÜNCH Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, SwitzerlandSearch for more papers by this authorP. GASSER, P. GASSER ETH Zürich, Electron Microscopy Centre (EMEZ), Zürich, SwitzerlandSearch for more papers by this authorA. LEEMANN, A. LEEMANN Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, SwitzerlandSearch for more papers by this authorR. LOSER, R. LOSER Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, SwitzerlandSearch for more papers by this authorR. WEPF, R. WEPF ETH Zürich, Electron Microscopy Centre (EMEZ), Zürich, SwitzerlandSearch for more papers by this authorP. LURA, P. LURA Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, SwitzerlandSearch for more papers by this author P. TRTIK, P. TRTIK Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, SwitzerlandSearch for more papers by this authorB. MÜNCH, B. MÜNCH Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, SwitzerlandSearch for more papers by this authorP. GASSER, P. GASSER ETH Zürich, Electron Microscopy Centre (EMEZ), Zürich, SwitzerlandSearch for more papers by this authorA. LEEMANN, A. LEEMANN Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, SwitzerlandSearch for more papers by this authorR. LOSER, R. LOSER Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, SwitzerlandSearch for more papers by this authorR. WEPF, R. WEPF ETH Zürich, Electron Microscopy Centre (EMEZ), Zürich, SwitzerlandSearch for more papers by this authorP. LURA, P. LURA Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, SwitzerlandSearch for more papers by this author First published: 09 September 2010 https://doi.org/10.1111/j.1365-2818.2010.03433.xCitations: 23 Pavel Trtik, Empa, Überlandstr. 129, CH-8600, Dübendorf, Switzerland. Tel: +41 44 823 4299; fax: +41 44 823 4035; e-mail: [email protected] Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary Due to the development of integrated low-keV back-scattered electron detectors, it has become possible in focussed ion beam nanotomography to segment not only solid matter and porosity of hardened cement paste, but also to distinguish different phases within the solid matter. This paper illustrates a method that combines two different approaches for improving the contrast between different phases in the solid matrix of a cement paste. The first approach is based on the application of a specially developed 3D diffusion filter. The second approach is based on a modified data-acquisition procedure during focussed ion beam nanotomography. A pair of electron images is acquired for each slice in the focussed ion beam nanotomography dataset. The first image is captured immediately after ion beam milling; the second image is taken after a prolonged exposure to electron beam scanning. The acquisition of complementary focussed ion beam nanotomography datasets and processing the images with a 3D anisotropic diffusion filter allows distinguishing different phases within the hydration products. References Berger, R. L. (1972) Calcium hydroxide – its role in fracture of tricalcium silicate paste. Science 175, 626. 10.1126/science.175.4022.626 CASPubMedWeb of Science®Google Scholar De Winter, D.A.M., Schneijdenberg, C., Lebbink, M.N., Lich, B., Verkleij, A.J., Drury, M.R. & Humbel, B.M. (2009) Tomography of insulating biological and geological materials using focused ion beam (FIB) sectioning and low-kV BSE imaging. J. Microsc. 233, 372–383. 10.1111/j.1365-2818.2009.03139.x PubMedWeb of Science®Google Scholar Dunn, D.N. & Hull, R. (1999) Reconstruction of three-dimensional chemistry and geometry using focused ion beam microscopy. Appl. Phys. Lett. 75, 3414–3416. 10.1063/1.125311 CASWeb of Science®Google Scholar Gostovic, D., Smith, J.R., Kundinger, D.P., Jones, K.S. & Wachsman, E.D. (2007) Three-dimensional reconstruction of porous LSCF cathodes. Electrochem. Solid State Lett. 10, B214–217. 10.1149/1.2794672 CASWeb of Science®Google Scholar Holzapfel, C., Schaf, W., Marx, M., Vehoff, H. & Mucklich F. (2007) Interaction of cracks with precipitates and grain boundaries: understanding crack growth mechanisms through focused ion beam tomography. Scr. Mater. 56, 697–700. 10.1016/j.scriptamat.2006.12.025 CASWeb of Science®Google Scholar Holzer, L., Indutnyi, F., Gasser, P., Munch, B. & Wegmann, M. (2004) Three-dimensional analysis of porous BaTiO3 ceramics using FIB nanotomography. J. Microsc. 216, 84–95. 10.1111/j.0022-2720.2004.01397.x CASPubMedWeb of Science®Google Scholar Holzer, L., Muench, B., Wegmann, M., Gasser, P. & Flatt, R. J. (2006a) FIB-Nanotomography of particulate systems – part I: particle shape and topology of interfaces. J. Am. Ceram. Soc. 89, 2577–2585. 10.1111/j.1551-2916.2006.00974.x CASWeb of Science®Google Scholar Holzer, L., Gasser, P. & Muench, B. (2006b) Quantification of capillary pores and Hadley grains in cement pastes using FIB-nanotomography. Proc. ECF 16, Alexandroupolis , Greece . Google Scholar Holzer, L., Gasser, P., Käch, A., Wegmann, M., Zingg, A., Wepf, R. & Münch, B. (2007) Cryo-FIB-nanotomography for quantitative analysis of particle structures in cement suspensions. J. Microsc. 227, 216–228. 10.1111/j.1365-2818.2007.01804.x CASPubMedWeb of Science®Google Scholar Inkson, B.J., Steer, T., Mobus, G. & Wagner T. (2001) Subsurface nanoindentation deformation of Cu–Al multilayers mapped in 3D by focused ion beam microscopy. J. Microsc. Oxford 201, 256–269. 10.1046/j.1365-2818.2001.00767.x CASPubMedWeb of Science®Google Scholar Kato, M., Ito, T., Aoyama, Y., Sawa, K., Kaneko T., Kawase, N. & Jinnai, H. (2007) Three-dimensional structural analysis of a block copolymer by scanning electron microscopy combined with a focused ion beam. J. Polym. Sci. Pt. B – Polym. Phys. 45, 677–683. 10.1002/polb.21088 CASWeb of Science®Google Scholar Leemann, A., Lothenbach, B., Siegrist, H. & Hoffmann, C. (2010) Influence of water hardness on concrete surface deterioration caused by nitrifying biofilms in wastewater treatment plants. Int. Biodeterior. Biodegrad. 64, 489–498. 10.1016/j.ibiod.2010.03.009 CASWeb of Science®Google Scholar Lothenbach, B., Le Saout, G., Gallucci, E. & Scrivener, K. (2008) Influence of limestone on the hydration of Portland cements. Cem. Concr. Res. 38, 848–860. 10.1016/j.cemconres.2008.01.002 CASWeb of Science®Google Scholar Munch, B. & Holzer, L. (2008) Contradicting geometrical concepts in pore size analysis attained with electron microscopy and mercury intrusion. J. Am. Ceram. Soc. 91, 4059–4067. 10.1111/j.1551-2916.2008.02736.x CASWeb of Science®Google Scholar Munch, B., Gasser, P., Holzer, L. & Flatt, R. (2006) FIB-nanotomography of particulate systems – part II: particle recognition and effect of boundary truncation. J. Am. Ceram. Soc. 89, 2586–2595. 10.1111/j.1551-2916.2006.01121.x CASWeb of Science®Google Scholar Munch, B., Trtik, P., Marone, F. & Stampanoni, M. (2009) Stripe and ring artifact removal with combined wavelet – Fourier filtering Opt. Expr. 17, 8567–8591. 10.1364/OE.17.008567 CASPubMedWeb of Science®Google Scholar Nellen, P.M., Callegari, V. & Sennhauser, U. (2006) Preparative methods for nanoanalysis of materials with focused ion beam instruments. Chimia 60, A735–741. 10.2533/chimia.2006.735 CASWeb of Science®Google Scholar Perona, P. & Malik, J. (1990) Scale-space and edge-detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639. 10.1109/34.56205 Web of Science®Google Scholar Promentilla, M.A.B., Sugiyama, T., Hitomi, T. & Takeda, N. (2009) Quantification of tortuosity in hardened cement pastes using synchrotron-based X-ray computed microtomography. Cem. Concr. Res. 39, 548–557. 10.1016/j.cemconres.2009.03.005 CASWeb of Science®Google Scholar Richardson, I.G. & Groves, G.W. (1993) Microstructure and microanalysis of hardened ordinary portland-cement pastes. J. Mater. Sci. 28, 265–277. 10.1007/BF00349061 CASWeb of Science®Google Scholar Rössler, C., Stark, J., Steiniger, F. & Tichelaar, W. (2006) Limited-dose electron microscopy reveals the crystallinity of fibrous C–S–H phases. J. Am. Ceram. Soc. 89, 627–632. 10.1111/j.1551-2916.2005.00714.x CASWeb of Science®Google Scholar Schaffer, M., Wagner, J., Schaffer, B., Schmied, M. & Mulders, H. (2007) Automated three-dimensional X-ray analysis using a dual-beam FIB. Ultramicroscopy 107, 587–597. 10.1016/j.ultramic.2006.11.007 CASPubMedWeb of Science®Google Scholar Skalny, J., Gebauer, J. & Odler, I., editors (2001) Material Science of Concrete, Special Volume: Calcium Hydroxide in Concrete. The American Ceramic Society, Westerville , USA . Google Scholar Taylor, H.F.W. (1990) Cement Chemistry. Academic Press, London , UK . Google Scholar Theodoridis, S. & Koutroumbas, K. (2009) Pattern Recognition. Academic Press, London , UK . Google Scholar Trtik, P., Dual, J., Muench, B. & Holzer, L. (2008) Limitation in obtainable surface roughness of hardened cement paste: 'virtual' topographic experiment based on focussed ion beam nanotomography datasets. J. Microsc. Oxford 232, 200–206. 10.1111/j.1365-2818.2008.02090.x CASPubMedWeb of Science®Google Scholar Trtik, P., Münch, B. & Lura, P. (2009) Considerations about nanoindentation on model materials and hardened cement pastes based on virtual experiments. Cem. Concr. Comp. 31, 705–714. 10.1016/j.cemconcomp.2009.07.001 CASWeb of Science®Google Scholar Tschumperlé, D & Deriche, R. (2005) Vector-valued image regularization with PDE's: a common framework for different applications. IEEE Trans. Pat. Anal. Mach. Intell. 27, 506–517. 10.1109/TPAMI.2005.87 PubMedWeb of Science®Google Scholar Uchic, M.D., Holzer, L., Inkson, B.J., Principe, E.L. & Munroe, P. (2007) Three-dimensional microstructural characterization using focused ion beam tomography. MRS Bull. 32, 408–416. 10.1557/mrs2007.64 CASWeb of Science®Google Scholar Velichko, A. & Mucklich, F. (2009) Quantitative 3D characterisation of graphite morphology in cast iron – correlation between processing, microstructure and properties. Int. J. Mater. Res. 100, 1031–1037. 10.3139/146.110148 CASWeb of Science®Google Scholar Zampini, D., Shah, S.P. & Jennings, H.M. (1998) Early age microstructure of the paste-aggregate interface and its evolution. J. Mater. Res. 13, 1888–1898. 10.1557/JMR.1998.0268 CASWeb of Science®Google Scholar Citing Literature Volume241, Issue3March 2011Pages 234-242 ReferencesRelatedInformation
Referência(s)